Докладчик: Светлана Петровна Плышевская (Таврическая академия КФУ им. В.И. Вернадского)
Тема доклада: СЦЕНАРИИ ВОЗНИКНОВЕНИЯ МЕТАУСТОЙЧИВЫХ СТРУКТУР В КВАЗИЛИНЕЙНЫХ
УРАВНЕНИЯХ ПАРАБОЛИЧЕСКОГО ТИПА
Дата: 28 января 2019 года (понедельник)
Время: 17-00
Место: Знаменская башня (ул. Комсомольская, д.3., вход внутри арки)
Аннотация: На отрезке рассматривается уравнение Кана-Хилларда с краевыми условиями. Для построения и анализа стационарных решений медленно меняющихся решений используются галёркинские аппроксимации средних размерностей (30-40). Обнаружено, что в двухпараметрических семействах дифференциальных уравнений реализуются седло-узловые бифуркации. Непрерывным ветвям стационарных решений соответствуют непрерывные ветви приближенных стационарных решений типа нутреннего переходного слоя с двумя точками перехода. Приближённые стационарные решения, взятые в качестве начальных функций исходной задачи, порождают медленно меняющиеся решения (метаустойчивые структуры).