M. Nevskii and A. Ukhalov, "Perfect simplices in $\mathbb{R}^5$", Beitr. Algebra Geom., 59:3, 501--521 (2018).

M. Nevskii and A. Ukhalov, "Perfect simplices in $\mathbb{R}^5$", Beitr. Algebra Geom., 59:3, 501--521 (2018).

https://link.springer.com/article/10.1007%2Fs13366-018-0386-6

АННОТАЦИЯ

Let Qn=[0,1]nQn=[0,1]n be the unit cube in RnRn, n∈Nn∈N. For a nondegenerate simplex S⊂RnS⊂Rn, consider the value ξ(S)=min{σ>0:Qn⊂σS}ξ(S)=min{σ>0:Qn⊂σS}. Here σSσS is a homothetic image of S with homothety center at the center of gravity of S and coefficient of homothety σσ. Let us introduce the value ξn=min{ξ(S):S⊂Qn}ξn=min{ξ(S):S⊂Qn}. We call S a perfect simplex if S⊂QnS⊂Qn and QnQn is inscribed into the simplex ξnSξnS. It is known that such simplices exist for n=1n=1 and n=3n=3. The exact values of ξnξnare known for n=2n=2 and in the case when there exists an Hadamard matrix of order n+1n+1; in the latter situation ξn=nξn=n. In this paper we show that ξ5=5ξ5=5 and ξ9=9ξ9=9. We also describe infinite families of simplices S⊂QnS⊂Qn such that ξ(S)=ξnξ(S)=ξn for n=5,7,9n=5,7,9. The main result of the paper is the confirmation of the existence of perfect simplices in R5R5.

 

REFERENCES

  1. Hall Jr., M.: Combinatorial Theory. Blaisdell Publishing Company, Mass., Toronto, London (1967)zbMATHGoogle Scholar

  2. Heil, E., Martini, H.: Special convex bodies. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, vol. A, pp. 347–385. North-Holland, Amsterdam (1993)CrossRefGoogle Scholar

  3. Hudelson, M., Klee, V., Larman, D.: Largest jj-simplices in dd-cubes: some relatives of the Hadamard maximum determinant problem. Linear Algebra Appl. 241–243, 519–598 (1996).  https://doi.org/10.1016/0024-3795(95)00541-2MathSciNetCrossRefzbMATHGoogle Scholar

  4. Lassak, M.: Parallelotopes of maximum volume in a simplex. Discrete Comput. Geom. 21, 449–462 (1999).  https://doi.org/10.1007/PL00009432MathSciNetCrossRefzbMATHGoogle Scholar

  5. Mangano, S.: Mathematica Cookbook. O’Reilly Media Inc., Cambridge (2010)Google Scholar

  6. Nevskii, M.V.: On a property of n-dimensional simplices. Mat. Zametki 87(4), 580–593 (2010) (in Russian).  https://doi.org/10.4213/mzm7698 English translation: Nevskii, M.V.: On a property of n-dimensional simplices. Math. Notes 87(3–4), 543–555 (2010)  https://doi.org/10.1134/S0001434610030326

  7. Nevskii, M.V.: On geometric characteristics of an nn-dimensional simplex. Model. Anal. Inf. Syst. 18(2), 52–64 (2011). (in Russian)MathSciNetGoogle Scholar

  8. Nevskii, M.: Properties of axial diameters of a simplex. Discrete Comput. Geom. 46(2), 301–312 (2011).  https://doi.org/10.1007/s00454-011-9355-7MathSciNetCrossRefzbMATHGoogle Scholar

  9. Nevskii, M.V.: Geometric Estimates in Polynomial Interpolation. P. G. Demidov Yaroslavl State University, Yaroslavl (2012). (in Russian)Google Scholar

  10. Nevskii, M.V.: Computation of the longest segment of a given direction in a simplex. Fundamentalnaya i prikladnaya matematika 18(2), 147–152 (2013) (in Russian). English translation: Nevskii, M.V.: Computation of the longest segment of a given direction in a simplex. J. Math. Sci. 2013(6), 851–854 (2014).  https://doi.org/10.1007/s10958-014-2175-6

  11. Nevskii, M.V., Ukhalov, A.Y.: On numerical characteristics of a simplex and their estimates. Model. Anal. Inf. Syst. 23(5), 603–619 (2016).  https://doi.org/10.18255/1818-1015-2016-5-603-619. (in Russian)MathSciNetCrossRefGoogle Scholar

  12. Scott, P.R.: Lattices and convex sets in space. Quart. J. Math. Oxf. 2(36), 359–362 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

  13. Scott, P.R.: Properties of axial diameters. Bull. Aust. Math. Soc. 39(3), 329–333 (1989).  https://doi.org/10.1017/S0004972700003233MathSciNetCrossRefzbMATHGoogle Scholar