Аннотация: Среди инвариантных характеристик динамических систем большую роль играют ляпуновские показатели и ляпуновская размерность. Анализ спектра показателей Ляпунова широко применяется для исследования сложной динамики в системах обыкновенных дифференциальных уравнений и в моделях, сводящихся к отображениям. В конечномерном случае, по теореме Оселедеца, линеаризованная на аттракторе система обыкновенных дифференциальных уравнений всегда является правильной по Ляпунову, и, тем самым, верхний предел может быть заменен на обычный, что позволяет эффективно вычислять показатели Ляпунова. В докладе планируется рассмотреть вопрос вычисления показателей Ляпунова для систем дифференциальных уравнений с запаздывающим аргументом, для которого данная теорема, вообще говоря, не работает. Будут приведены результаты тестирования разработанного алгоритма для уравнения Хатчинсона и проиллюстрировано применение алгоритма к некоторым задачам.
Место: Знаменская башня, ул. Комсомольская, д.3. (вход внутри арки).