Миникурс Г. Граховски, "Группы и алгебры Ли: элементарное введение."

Опубликовано skonstantin - ср, 21/04/2021 - 16:04

Аннотация:
Группы Ли естественно возникают при рассмотрении непрерывных симметрий. Изучение групп Ли было начато независимо немецким математиком Вильгельмом Киллингом (1847-1923) и норвежским математиком Софусом Ли (1842-1899). Группы Ли с точки зрения богатства и разнообразия структур очень привлекательны как сами по себе, так и в связи с их важными применениями в дифференциальной геометрии и топологии. Они также играют важную роль в геометрии, физике и математическом анализе.

Алгебры Ли естественно появляются при изучении инфинитезимальных свойств групп Ли. В физике группы Ли появляются как группы симметрий физических систем, а соответствующие алгебры Ли (состоящие из касательных векторов, близких к единице) могут рассматриваться как множества бесконечно малых движений-симметрий. Группы и алгебры Ли находят много применений и в квантовой физике.

Настоящий миникурс задуман как введение в теорию групп и алгебр Ли. На основе элементарных примеров из геометрии и механики, вводятся основные понятия теории непрерывных групп преобразований и групп Ли. Далее, вводятся основные понятия теории алгебр Ли, в том числе экспоненциальное отображение, коммутатор (скобка Ли), генераторы алгебр Ли, форма Киллинга. Будут приведены основные результаты классификации алгебр Ли по их алгебраическим свойствам (простоте, полупростоте, разрешимости, нильпотентности, абелевости). Особое внимание будет уделено классификации полупростых алгебр Ли по их матрицам Картана (и соответствующим диаграммам Дынкина).

Никаких предварительных знаний от студентов не предполагается, кроме стандартного университетского курса по линейной алгебре.

Лектор: Георги Граховски, Эссекский университет, Великобритания (University of Essex, UK).

1-я лекция: пятница 23 апреля 202116:10-17:40.
2-я лекция: суббота 24 апреля 202109:00-10:30.

Участники миникурса получать ссылку на zoom по эл. почте. 

Дата мероприятия
пт, 23/04/2021 - 16:00