Содержимое страницы

Profile picture for user Sergei_Igonin
Должность
Научные сотрудники
Информация

Игонин Сергей Александрович

PhD по математике (University of Twente, Нидерланды),

научный сотрудник ЯрГУ им. П.Г. Демидова

Список публикаций

Основные публикации:

1. S. Igonin and G. Manno, “Lie algebras responsible for zero-curvature representations of scalar evolution equations”, Journal of Geometry and Physics, 138 (2019), 297–316.

2. G. Berkeley and S. Igonin, “Miura-type transformations for lattice equations and Lie group actions associated with Darboux-Lax representations”, Journal of Physics A: Mathematical and Theoretical, 49 (2016), 275201, 43 pp.

3. S. Igonin and M. Marvan, “On construction of symmetries and recursion operators from zero-curvature representations and the Darboux-Egoroff system”, Journal of Geometry and Physics, 85 (2014), 106–123.

4. S. Igonin, J. van de Leur, G. Manno, and V. Trushkov, “Infinite-dimensional prolongation Lie algebras and multicomponent Landau-Lifshitz systems associated with higher genus curves”, Journal of Geometry and Physics, 68 (2013), 1–26.

5. S. Igonin, “Algebras and algebraic curves associated with PDEs and Bäcklund transformations”, Max Planck Institute for Mathematics preprint series, MPIM2010-120 (2010), www.mpim-bonn.mpg.de/preprints/

6. S. Igonin, “Coverings and fundamental algebras for partial differential equations”, Journal of Geometry and Physics, 56 (2006), 939–998.

7. S. A. Igonin, “Miura type transformations and homogeneous spaces”, Journal of Physics A: Mathematical and General, 38 (2005), 4433–4446.

8. S. Igonin, P. Kersten, and I. Krasilshchik, “On symmetries and cohomological invariants of equations possessing flat representations”, Differential Geometry and its Applications, 19 (2003), 319–342.

9. S. Igonin and R. Martini, “Prolongation structure of the Krichever-Novikov equation”, Journal of Physics A: Mathematical and General, 35 (2002), 9801–9810.

10. S. Igonin. “Conservation laws for multidimensional systems and related linear algebra problems”, Journal of Physics A: Mathematical and General, 35 (2002), 10607–10617.