A.V. Mikhailov "Polynomial integrable Hamiltonian systems on symmetric powers of plane curves"

Submitted by skonstantin on Sat, 12/01/2018 - 19:26

Abstract: We have found a quite general construction of commuting vector fields on the $k$-th symmetric power of $\mathbb{C}^{m}$ and tangent vector fields to the $k$-th symmetric power of an affine variety $V\subset\mathbb{C}^{m}$. Application of this construction to the $k$-th symmetric power of a plane algebraic curve $V_g$ of genus $g$ leads to $k$ integrable Hamiltonian systems on $\mathbb{C}^{2k}$ (or on $\mathbb{R}^{2k}$, if the base field is $\mathbb{R}$). In the case $k=g$, the symmetric power ${\rm Sym}^k(V_g)$ is birationally isomorphic to the Jacobian of the curve $V_g$, and our system is equivalent to well-known Dubrovin's system, which was derived and studied in the theory of finite-gap solutions (algebro-geometric integration) of the Korteweg–de Vries equation. We have found coordinates in which the obtained systems and their Hamiltonians are polynomial. For $k=2,\ g=1,2,3$ we present these systems explicitly and discuss the problem of their integration.

Venue: 7th corpus YarSU, lecture theatre 419

Event date
Wed, 12/05/2018 - 16:00