S. Konstantinou-Rizos and T.E. Kouloukas, A noncommutative discrete potential KdV lift, Journal of Mathematical Physics, 59, 063506 (2018).
https://doi.org/10.1063/1.5041947
ABSTRACT
In this paper, we construct a Grassmann extension of a Yang-Baxter map which first appeared in the work of Kouloukas and Papageorgiou [J. Phys. A: Math. Theor. 42, 404012 (2009)] and can be considered as a lift of the discrete potential Korteweg-de Vries (dpKdV) equation. This noncommutative extension satisfies the Yang-Baxter equation, and it admits a 3 × 3 Lax matrix. Moreover, we show that it can be squeezed down to a novel system of lattice equations which possesses a Lax representation and whose bosonic limit is the dpKdV equation. Finally, we consider commutative analogs of the constructed Yang-Baxter map and its associated quad-graph system, and we discuss their integrability.
REFERENCES
- 1.Adler, V., Bobenko, A., and Suris, Y., “Classification of integrable equations on quad-graphs. The consistency approach,” Commun. Math. Phys. 233, 513–543 (2003). https://doi.org/10.1007/s00220-002-0762-8, Google ScholarCrossref
- 2.Adler, V., Bobenko, A., and Suris, Y., “Geometry of Yang-Baxter maps: Pencils of conics and quadrirational mappings,” Commun. Anal. Geom. 12, 967–1007 (2004). https://doi.org/10.4310/cag.2004.v12.n5.a1, Google ScholarCrossref
- 3.Berezin, F., Intoduction to Superanalysis (D. Reidel, Dordrecht, 1987). Google ScholarCrossref
- 4.Bobenko, A. and Suris, Y., “Integrable systems on quad-graphs,” Int. Math. Res. Not. 11, 573–611 (2002). https://doi.org/10.1155/s1073792802110075, Google ScholarCrossref
- 5.Bridgman, T., Hereman, W., Quispel, G. R. W., and van der Kamp, P. H., “Symbolic computation of Lax pairs of partial difference equations using consistency around the cube,” Found. Comput. Math. 13, 517–544 (2013). https://doi.org/10.1007/s10208-012-9133-9, Google ScholarCrossref
- 6.Buchstaber, V., “The Yang-Baxter transformation,” Russ. Math. Surv. 53, 1343–1345 (1998). https://doi.org/10.1070/rm1998v053n06abeh000094, Google ScholarCrossref
- 7.Doliwa, A., “Non-commutative rational Yang-Baxter maps,” Lett. Math. Phys. 104, 299–309 (2014). https://doi.org/10.1007/s11005-013-0669-7, Google ScholarCrossref
- 8.Drinfeld, V., “On some unsolved problems in quantum group theory,” Lect. Notes Math. 1510, 1–8 (1992). https://doi.org/10.1007/bfb0101175, Google ScholarCrossref
- 9.Etingof, P., Schedler, T., and Soloviev, A., “Set-theoretical solutions to the quantum Yang-Baxter equation,” Duke Math. J. 100, 169–209 (1999). https://doi.org/10.1215/s0012-7094-99-10007-x, Google ScholarCrossref
- 10.Grahovski, G., Konstantinou-Rizos, S., and Mikhailov, A., “Grassmann extensions of Yang-Baxter maps,” J. Phys. A: Math. Theor. 49, 145202 (2016). https://doi.org/10.1088/1751-8113/49/14/145202, Google ScholarCrossref
- 11.Grahovski, G. and Mikhailov, A., “Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras,” Phys. Lett. A 377, 3254–3259 (2013). https://doi.org/10.1016/j.physleta.2013.10.018, Google ScholarCrossref
- 12.Hirota, R., “Nonlinear partial difference equations. I. A difference analog of the Korteweg-de Vries equation,” J. Phys. Soc. Jpn. 43, 1423–1433 (1977). https://doi.org/10.1143/jpsj.43.1424, Google ScholarCrossref
- 13.Kassotakis, P. and Nieszporski, M., “On non-multiaffine consistent-around-the-cube lattice equations,” Phys. Lett. A 376, 3135–3140 (2012). https://doi.org/10.1016/j.physleta.2012.10.009, Google ScholarCrossref
- 14.Konstantinou-Rizos, S. and Mikhailov, A., “Darboux transformations, finite reduction groups and related Yang-Baxter maps,” J. Phys. A: Math. Theor. 46, 425201 (2013). https://doi.org/10.1088/1751-8113/46/42/425201, Google ScholarCrossref
- 15.Konstantinou-Rizos, S. and Mikhailov, A., “Anticommutative extension of the Adler map,” J. Phys. A: Math. Theor. 49, 30LT03 (2016). https://doi.org/10.1088/1751-8113/49/30/30lt03, Google ScholarCrossref
- 16.Kouloukas, T. E. and Papageorgiou, V. G., “Yang–Baxter maps with first-degree-polynomial 2 × 2 Lax matrices,” J. Phys. A: Math. Theor. 42, 404012 (2009). https://doi.org/10.1088/1751-8113/42/40/404012, Google ScholarCrossref
- 17.Kouloukas, T. E. and Papageorgiou, V. G., “Entwining Yang-Baxter maps and integrable lattices,” Banach Center Publ. 93, 163–175 (2011). https://doi.org/10.4064/bc93-0-13, Google ScholarCrossref
- 18.Kouloukas, T. E. and Papageorgiou, V. G., “Poisson Yang-Baxter maps with binomial Lax matrices,” J. Math. Phys. 52, 073502 (2011). https://doi.org/10.1063/1.3601520, Google ScholarScitation, ISI
- 19.Kouloukas, T. E. and Tran, D., “Poisson structures for lifts and periodic reductions of integrable lattice equations,” J. Phys. A: Math. Theor. 48, 075202 (2015). https://doi.org/10.1088/1751-8113/48/7/075202, Google ScholarCrossref
- 20.Mikhailov, A., Papamikos, G., and Wang, J. P. “Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere,” Lett. Math. Phys. 106, 973–996(2016). https://doi.org/10.1007/s11005-016-0855-5, Google ScholarCrossref
- 21.Nijhoff, F., Papageorgiou, V. G., Capel, H. W., and Quispel, G. R. W., “The lattice Gelfand-Dikii hierarchy,” Inv. Probl. 8, 597–621(1992). https://doi.org/10.1088/0266-5611/8/4/010, Google ScholarCrossref
- 22.Nijhoff, F. and Capel, H., “The discrete Korteweg-de Vries equation,” Acta Appl. Math. 39, 133–158 (1995). https://doi.org/10.1007/bf00994631, Google ScholarCrossref
- 23.Nijhoff, F. and Walker, A., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems,” Glasgow Math. J. 43, 109–123 (2001). https://doi.org/10.1017/s0017089501000106, Google ScholarCrossref
- 24.Papageorgiou, V. G., Nijhoff, F. W., and Capel, H. W., “Integrable mappings and nonlinear integrable lattice equations,” Phys. Lett. A 147, 106–114 (1990). https://doi.org/10.1016/0375-9601(90)90876-p, Google ScholarCrossref
- 25.Papageorgiou, V. G. and Tongas, A. G., “Yang–Baxter maps and multi-field integrable lattice equations,” J. Phys. A: Math. Theor. 40, 12677 (2007). https://doi.org/10.1088/1751-8113/40/42/s12, Google ScholarCrossref
- 26.Papageorgiou, V. G. and Tongas, A. G., “Yang-Baxter maps associated to elliptic curves,” e-print arXiv:0906.3258v1 (2009). Google Scholar
- 27.Papageorgiou, V. G., Tongas, A. G., and Veselov, A. P., “Yang–Baxter maps and symmetries of integrable equations on quad-graphs,” J. Math. Phys. 47, 083502 (2006). https://doi.org/10.1063/1.2227641, Google ScholarScitation, ISI
- 28.Sklyanin, E., “Some algebraic structures connected with the Yang-Baxter equation,” Funct. Anal. Appl. 16, 263–270 (1982). https://doi.org/10.1007/bf01077848, Google ScholarCrossref
- 29.Sklyanin, E., “Classical limits of SU(2)-invariant solutions of the Yang-Baxter equation,” J. Sov. Math. 40, 93–107 (1988). https://doi.org/10.1007/bf01084941, Google ScholarCrossref
- 30.Sklyanin, E., “Separation of variables, new trends,” Prog. Theor. Phys. Suppl. 118, 35–60 (1995). https://doi.org/10.1143/ptps.118.35, Google ScholarCrossref
- 31.Suris, Y. and Veselov, A., “Lax matrices for Yang-Baxter maps,” J. Nonlinear Math. Phys. 10, 223–230 (2003). https://doi.org/10.2991/jnmp.2003.10.s2.18, Google ScholarCrossref
- 32.Veselov, A., “Yang-Baxter maps and integrable dynamics,” Phys. Lett. A 314, 214–221 (2003). https://doi.org/10.1016/s0375-9601(03)00915-0, Google ScholarCrossref, CAS
- 33.Veselov, A., “Yang-Baxter maps: Dynamical point of view,” Math. Soc. Jpn. Mem. 17, 145–167 (2007). https://doi.org/10.2969/msjmemoirs/01701C060, Google ScholarCrossref
- 34.Xue, L. L., Levi, D., and Liu, Q. P., “Supersymmetric KdV equation: Darboux transformation and discrete systems,” J. Phys. A: Math. Theor. 46, 502001 (2013). https://doi.org/10.1088/1751-8113/46/50/502001, Google ScholarCrossref
- 35.Xue, L. L. and Liu, Q. P., “Bäcklund–Darboux transformations and discretizations of super KdV equation,” SIGMA 10, 045 (2014). https://doi.org/10.3842/SIGMA.2014.045, Google ScholarCrossref
- 36.Xue, L. L. and Liu, Q. P., “A supersymmetric AKNS problem and its Darboux-Bäcklund transformations and discrete systems,” Stud. Appl. Math. 135, 35–62 (2015). https://doi.org/10.1111/sapm.12080, Google ScholarCrossref