Seminar (online): P. Xenitidis "Darboux and Bäcklund transformations for integrable difference equations"

Submitted by A.Tolbey on Wed, 12/15/2021 - 22:21

Speaker: Pavlos Xenitidis (Liverpool Hope University)

Date and time: 22.12.2021, 17:00 (GMT +03:00)

Title: Darboux and Bäcklund transformations for integrable difference equations

Abstract: Motivated by known results on integrable differential equations, I will discuss Darboux and Bäcklund transformations for integrable difference equations. More precisely I will present a method for  the construction of these transformations, derive their superposition principle, explain the relation of the latter to Yang-Baxter maps, and demonstrate their implementation in the construction of solutions. In this talk I will use two  illustrative examples, namely the Hirota KdV equation and an integrable discretisation of the NLS equation (aka Adler-Yamilov system), and I will discuss the extension of these ideas to noncommutative systems.

To access the online seminar please contact  Anna Tolbey bekvaanna@gmail.com

Event date
Wed, 12/22/2021 - 17:00