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Quantum algebra Ugy(sly)

Let (Cij)lgi,jSN—l be the Cartan matrix. The quantized universal
enveloping algebra Ug(sly) is defined by the generators
Ei, Fi,Ki = ", K.'! and the relations:
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Representations and Multiplicity space
Finite-dimensional representations of Ug(s/y) enumerated by
Young diagrams.

A=[n>n>...>rm1]= H

Let us consider the tensor product of 2 f.-d. irreps V,, ® V,, and

decompose it into irreps:

VoV, =@M, eV, (1)
P

for Uq(5/2) VJ ® Vj2 = VYiji—jp| S ... Vj1+j2 (2)

is the multiplicity space, i.e. the vector space of highest weight

174

Here M£
p in the product, whose dimension m = dim(M?,) is equal to the number

of V, in the decomposition. If m = 1 is one-dimensional, the

representation is called multiplicity-free.



Quantum dimension

Let p be a half-sum of all positive roots of sly, then there exists an

element Ky, € Uq(sly) defined as

szzKln1 K;z...K,r\;'\fll, (3)
N-1
2p = Z nja;, n; € No, (4)

i=1

where «; are simple roots. The number
D” = qTrVu (1) = TI’\/M (sz) (5)

is called the quantum dimension of V.



Two bases

Let us consider three representations V), ® V), ® Vj,.

Associativity of tensor product implies that (Vy, ® Vj,) ® Vy, is

isomorphic to Vy, ® (Vi, ® Vi,):

(Van@Vs,) @V, = (@ W@vﬂ) Vs, = DM oM ey,

3 P

VA1®(VA2®V>\3 V>\1 <@ M)\zA3®V > = @ M?1V®M3‘2A3®Vp
oV

Graphically one can depict these bases as follows
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6j-symbols

The rotation matrix of one basis (6) into another (7) is called a matrix of

6j-symbols or Racah-Wigner matrix:

m3mgy
AL A
Az p

U L P MM — G MreM? (8)

mymsy I v

{ Moo }"“"”_ 1, [Al Azrm“ o)
=—— U,

A3 p v - /DD, A3 p -

6j symbols first appeared in the work of E. Wigner in 1940, where they

were used as a tool for studying irreducible representations SO(3) and

SU(2). In 1942, while studying atomic spectra, G. Racah introduced the

concept of recoupling coefficients to describe angular momenta in

quantum mechanics.



6j-symbols: Applications
6j-symbols are used in the generalized theory of angular
momentum to describe complex systems: atoms, nuclei, molecules,
hadrons. The non-complete list of applications:

@ nuclear physics (see Landau-Lifshitz. Quantum mechanics, V.3, §108)
® QCD (e.g., Landau-Pomeranchuk-Migdal effect)

© condensed matter (e.g., ultracold alkaline-earth atoms)

@ conformal field theories (fusion matrix)

® 3d quantum gravity (Ponzano-Regge model)

@ integrable systems

@ knot theory (Reshetikhin-Turaev invariants)

@ invariant of 3-manifolds (Turaev-Viro invariants)

© topological quantum computer

i special functions (e.g., orthogonal polynomials)



Addition of angular momenta

The 6j-symbols arise naturally in the problem concerning the
addition of 3 angular momenta. The state of the system depends
on coupling scheme:

B J3 J2 J3

J12 u

J23
jl J J1 J

Wave functions of the coupling schemes are related as follows:

Vi3, = Z Uaos * Yo, (10)

J12



Example of quantum knot invariant |

K1 =K, < Reidemeister moves:

D LB S

I 11
Let's associate vector space with every strand |; — V;. If we define invertible

linear operators by

Ri = ].v1 (X)].\/2 ®X...Q P7V€,-,,-+1 ®...®1\/’77 S End(V1 ®...,®Vm), (11)

where P(x ® y) = y ® x and R acts on two Uy(sly)-modules V; and Vi1

. ¥ C;  Hi®H; .
Ryv,w = q" I[I  ewlt-a"Es @ F] (12)

posit. roots 8
then it is well known that Ri,...,Rm—1 define a representation of the Artin’s
braid group B, on m strands:
m:Bn — End(Vi®...,0Vn)
7T(0',') = R,‘,

where o1, ...,0m_1 are generators of the braid group B,.

(13)



Example of quantum knot invariant Il

Any knot can be given as the closure ‘ V)

of the corresponding braid. Operators R1,..., Rm—1 P -
satisfies 2nd and 3 Reidemeister moves. In order to &g §
satisfy 1st R-move one should to consider quantum trace:

HY(q,A=q") = ¢Trvg..ov, (RIRZ...), ‘ (14)

where Vi = ... =V, = V), because we consider a knot, which have only 1
component.

This quantum knot invariant in the case of Uy(sly) is called colored
HOMFLY-PT polynomial.

This invariant (14) is a vacuum expectation value (Wg(K)) for the Wilson loop
correlators in the Chern-Simons theory. It is very interesting, because the
Chern-Simons theory is defined in terms of classical Lie algbera, but

non-perturbative answer is given in terms of quantum algebra.



Example of quantum knot invariant Il

How to calculate this quantity HX (¢, A = ¢") = s Trv,e--.ov, (RIRE..
e Consider the case with 2 strands, where we have only R1 = PR, v,. |
eigenvalues are known [N.Reshetiknin’1987]:

e(Ruv,.v,) = £q@@I-CM=C02) - \where G, is a quadratic

Casimir operator (V) = Z (i=f), i®e Vo= @ Q«.
k

(i, j)EX

)7

ts

(15)



Example of quantum knot invariant Il

How to calculate this quantity HX (g, A = ¢") = s Trv,e--.ov, (RIRE...)?
e Consider the case with 2 strands, where we have only R1 = PR, v,. Its
eigenvalues are known [N.Reshetiknin’1987]:

e(Ruv,.v,) = £q@@I-CM=C02) - \where G, is a quadratic (15)
Casimir operator (V) = Z (i=f), i®e Vo= @ Q«.
(i, j)EX

e For 3 strands we have 2 R-matrices: R1 =R ®1land R =1Q R.
Diagonalization: basis (V1 ® V2) ® V5 for Ry and Vi ® (Vo ® V3) for Ra.

B

With the help of Racah-Wigner matrix we have

Vi V. Vi Vi
=ut| " 7| diag(R)-U| P2
Vo Vi Vi Wy




Symmetries of 6j-symbols: orthogonality

Values and various properties of quantum 6j-symbols are
well-known for Uq(sk) [A.N.Kirillov and N.Y.Reshetikhin, 1989],
but much less is known for N > 2. Nevertheless, some properties
and relations for them are known for an arbitrary N. Let us briefly
discuss them [C.R.Lienert and P.H.Butler, 1992].

e Racah matrices are orthogonal:

Z At A A JAM A2 A Dy = O3 N
o (A3 A2z Az (A3 A Ay ” +/ Daas - D,

(16)



Symmetries of 6j-symbols: tetrahedron |

Representations of Ug(sk) enumerated by [j] =
Tensor product rule is given by :

Ui @ o] = Lhel, 2=l —Jjol, st +jo. .
{ ] Lo Lino] } _
Ua]l [Da2s] [s]

Tetrahedral symmetry group S; contains 4! = 24 eIements.




Symmetries of 6j-symbols: tetrahedron |

Representations of Ug(sk) enumerated by [j] =
Tensor product rule is given by :

Ui @ o] = Lhel, 2=l —Jjol, st +jo. .
{ ] Lo Lino] } _
Ua]l [Da2s] [s]

Tetrahedral symmetry group S; contains 4! = 24 eIements.

Additional Regge symmetries [ T.Regge, 1959]:

{[h] (2] [hz]}: {[p—m [p — ] Uu]} a7
[l Ual sl [p—ssl [p—jal [ia])"

where p = 1 (ji+jo+j3+js). In total, for N =2 we have 144
symmetries, full symmetry group S x S3.



Symmetries of 6j-symbols: tetrahedron Il

Tetrahedral symmetries are the symmetries between 6-j symbols
that are generated by permutations of rows and columns

A1 A A _ A3 X A3 _ (18)
A3 A2z A3 A1 A3 A2
_ A3 A2z A2 _ A Az A _ (19)
A1 A Aoz A123 A3 A3
_ A2 A1 A (20)
23 Az Aoz

where \ denotes conjugate representation: A ® A > @



Turaev-Viro invariants of 3-manifolds

Let us fix a triangulation A of a compact 3-manifold M. For simplicity we
assume that M is closed OM = @&. Let us consider irreps of Ug(sh) and put

q = exp (27”) k > 2. We associate representation j. to each edge e as follows:
(] L2l [l _
Usl  [Lia2s]  [is]

Then we define the following partition function:

J2

J3

B _( [i] l2] [l
TV(q,)) < > ZH H{ Us] 23]  [is] } =

j=1 eeA teEA

According to the theorem of V.G.Turaev and O.Y.Viro [1990] the quantity
TV(q,A) is independent of the triangulation A, but depends only on the
topology of M.



Symmetries of 6j-symbols: Racah identity

The Racah back-coupling rule is a general property of 6-j symbols:

q

Az Az A3
SRR Ko ® AN
> A3 Az A A3 vA3

This property follows from the hexagon axiom of R-matrix 7%1273 = 7’\21727@2,3:
A A Ag Ag AL A

A1z
A2 Riz,3
R
Atz wl A2
Ay Az Ag

Az At Az
D)
/\12:;\&2‘:‘&
Ria A2z
T /

AL Ay A

\2@
A

123 123

G (A1) +C(A3)+C(A12)+Ca(X23) — Co(X2) — Co(A123) {)‘1 A2 )‘12} _



Symmetries of 6j-symbols: pentagon |
There are 5 possibilities to decompose the tensor product of

Ty, ® Ty, ® Ty, ® Ty, into irreducible representations:
((Tx, ® Ta,) ® Ta,) @ Ty, (22)
(Th, @(Th, ® Ty,)) @ T, (23)
(Th, @ Ta,) @ (T, ® To,) (24)
T @((Ta, ® Tay) @ To,) (25)
(26)
0

Th® (T)\z ® (T)\3 ® T>\4))
We can go from (22) to (26) by (22) — (23) — (25) — (26) and also by
the chain (22) — (24) — (26) usmg 6J symbols at each step

M Ay M

W If/\lkz)\z‘ \y Ik[)\lz&l W

l”*lz*\aM lUM*sM

A NN A M P X
R 7 s
Uxidzags

A2z
Arzsa Az




Symmetries of 6j-symbols: pentagon Il

By this way we get Biedenharn-Elliott identity ('1953), or pentagon identity:
Z Ds At A Aw | JAr A s JAe As Aes|
e 21 Az Az As o A134 Aoz A Aoza Az
A2 A3 s At A A
Ae Az Am Ass Ai2sa Aosa
Theorem (Butler'1981)

Non-primitive 6j-symbols can always be converted to primitive ones.
A1 A2 %) A1 A2 OorO N A1 A2 A12
A3 Az A A3 Ais A23 A3 Az Ax

A A A .
! 2 2l Let A12 be a representation
Asa A12za Aosg

with the smallest number of boxes. Put A3 = O and take \i23 one box fewer

Recipe. Let us calculate

than A1z (fusion rules are ok).



Known results

e Uy(sh), A.N.Kirillov and N.Y.Reshetikhin, 1989

. 4
{“ 2 ’_} VR T (“1) " 0, 1, ) 01, 10, 1) 01, 11, )01, 73, ) X
J

s ra

<3 (=1) [k + 1]! - [k=r=ra=i]' " k=rs—ra=i]\ " [k=ri—ra—j]' " [k=ro—rs—j]1 }
=t [n+r+r+r—k] [n+r+i+j-k][ra+ra+i+j-k]! ’

g —q" _ Jla—b+c]l[b—a+c][a+ b— ]!
[n] = qq—l’o(a’b’c)_\/ [a+b+c+1]



Known results

e Uy(sh), A.N.Kirillov and N.Y.Reshetikhin, 1989

. 4
{“ 2 ’_} VR T (“1) " 0, 1, ) 01, 10, 1) 01, 11, )01, 73, ) X
J

s ra

<3 (=1) [k + 1]! - [k=r=ra=i]' " k=rs—ra=i]\ " [k=ri—ra—j]' " [k=ro—rs—j]1 }
=t [n+r+r+r—k] [n+r+i+j-k][ra+ra+i+j-k]! ’

g —q" _ Jla—b+c]l[b—a+c][a+ b— ]!
[n] = qq—l’o(a’b’c)_\/ [a+b+c+1]

11
e A
o Uy(sly), S. Alisauskas, 1995, {[“] 2 12}

[s] A2z Ass n



Solution of the pentagon identity in U,(sh)

K.S.Rao, T.S5.Santhanam, R.A.Gustafson, 1987

Z D A1 A2 A At A3 A3 A2

A

on ZlAs Az A3 Aa o A2za A2z A4
Az A3 A A1
A A3s Az A3

A3
A23a

A2

A1234

A23
A34
A

A234

} (28)



Solution of the pentagon identity in U,(sh)
K.5.Rao, T.S.Santhanam, R.A.Gustafson, 1987

Z D At A2 A | JA o A Awes| A Az A |
N =
on ZlAs Az A3 Aa o A2za A2z A4 Azg

A23a

Az A3 A A1 A2 A (28)
As o A23a A A3z A2z A2z
AM=[n], Xe=[r], As=[r], Az=[n2], Aas=/[r3]

M=1[2], Aa=][n] € M@\ ={[r5-2][r3],[r3 +2]}
A123 = A12zs = [R],  Aoza = [n]



Solution of the pentagon identity in U,(sh)
K.S.Rao, T.S5.Santhanam, R.A.Gustafson, 1987

Z D At A2 A JAr o Az Aws| JA2 Az Aos|
N =
on ZlAs Az A3 Aa o A2za A2z A A A
A2 A3 Az A1 A A (28)
As o A23a A A3z A2z A2z
AM=[n], Xe=[r], As=[r], Az=[n2], Aas=/[r3]

M=1[2], Aa=][n] € M@\ ={[r5-2][r3],[r3 +2]}
A123 = A12zs = [R],  Aoza = [n]

ZD n rn m||n s Rl )Jr n ns| _Jn2 n R |n
- s rn R nmn3 2 R n 2 n n 2 R n n

e =n-2ohen+2, x=n (29)

iq nomn x | _[x o5 Rl [n n x (30)
= rn R n4+2i 2 R n3 r R n

xS
3

r12}



g-Hypergeometric series

The g-hypergeometric series is defined as:

ar ... > 317 ey ar; q) n (n) 1+p—r "
% ,q, ( 1)qC ) 31
P\by ... Z b17..  bpi q)n (=1) (9,9) (31)
where (a,q)n = Z;S(l — ag¥) is a g-Pochhammer symbol. In the case

r = p+ 1 a more convenient form is:

317"'7ap,ap+1_ _ qal7"'7qap7qap+1.
p+1¢p ( b17 o bp vq72> = P+1¢P ( qbl, - .,qbp 4,2 ). (32)

because it may be reformulated in terms of g-factorials:

b <31—|—1,...,ap+1,ap+1—|—1; 72) :i[aﬁrn]! [aps1+n]!  [b1]! [b]!

b1+1,...,bp+1 —o

zn

[l 7 [apal! [botall " [bptnll [a]l



6j-symbol via g-hypergeometric series

With the help of Sears’ transformation

4¢3<X,y, z, n;q7q)_[v—z—n—l]![u—z—n—l]![v—l]![u—l]!
u,v,w

" v—z—1)[v—n—1][u—z—1][u—n—1]! ¢

wW—X,W—Yy,Z,n
3
l—u4z+n,1—v+z+n,w
(33)

one can transform Kirillov-Reshetikhin's answer into the following

n nr

R

rnz

{

—n—rn+n2

}:K.4¢3<

n 3 b17

ai, a2, 4ds3, s

b2, b3

q, q) ; (34)

—I’1—I‘2—f3—R—2

—n—rn—rn—2

23,’ = 2b,‘ = —2!’1 5 (35)
—n—R+nrs3 oy
—n — R — 3 — 2 !
[r1—:‘§+r23] | [r23—2r3+f2} | 1

\/ [=52]

—r1+2R+r23} | I:R+r1-g2+r23} | |

[rapEta]l [Fom ]y [atg=mn]

i

»



g-Racah polynomial

—n, n+a+b+1, —x, x+c+d+1
Rn(z(x); a, b,c,d|g) =40 ’ T 1 q,
n(z(x) [4) 43( a+tl,b+d+1,c+1 q)

where n =0,1,..., L is the degree of the polynomial in variable
z(x) = [X][x+c+d+1]
Three-term recurrence relation:

[X][x+c+d+1] Ra(z(x)) = An-Rnt1(2(x)) — (AntCa) - Rn(2(x)) + Co- Ra-1(2(x))
with coefficients specified for g-Racah polynomial: (36)
_[n+a+1)n+a+b+1][n+b+d+1][n+c+1]
N 2n+a+b+1][2n+a+b+2]
c — [Al[n+a+ b—c][n+a—d][n+ b
"7 [Rn4+a+b2n+a+b+1]

An

37 W(x) Ra(2(x)) Rin(2(x)) = Aol (37)

X



6) and g-Racah polynomial

n r 1
1o = = - R,(v(x); o, B,7,6|q), where (38)
rs R a3 K
a:_@_l,5:_,2_1,5:%,7:_W_2,
_ktr—nrs _n+R-—n2
2 U 2

Orthogonal relation for g-Racah polynomials

S Pr()Pal(x)) - 2R g (39)

comes from orthogonal relation for 6j-symbols up to normalization K?:

z{g f } { . m}D(V)D(u)l (40)

r r r
" 23 3 23



Tug-the-hook symmetry |
|

A Young diagram is placed inside an appropriate (K + M|M) fat hook.
Parametrize the first K rows by their length R;, i = 1,..., K, the rest rows are
parametrized by shifted Frobenius variables
a,-zR,-—(i—K)—i—l,B,-: ,-,_K—I'—‘r].,l':K—l—l,...,K-i-M (41)
The tug-the-hook transformation pulls the Young diagram inside the fat hook:
T£K+M‘M):R,‘—>R,‘—6, aj—aij—e¢e, Bi— Bi+te, (42)

where € is the corresponding shift of the diagram.



Tug-the-hook symmetry Il

Conjecture (Lanina,Sleptsov'2022)

Given arbitrary irreducible finite-dimensional representations
V/\la V/\27 V)\37

V)\12 & V)\l () V/\2, V)\23 < V/\2 X V)\3,
V)\123 € V)\l & V)\2 & V)\3

of Uqy(sly) for generic q, Racah coefficients are invariant under the
tug-the-hook transformation:

A2 y
A23

for K, M and integer shifts €1, €3, €3 for which the tug-the-hook

T(K+M|M)()\l) T£!2<+M\M)(>\2)

€1

Tg3<+M|M)(>\3) T(K+M\M)(/\123)

€1+e€xt+e€3

A1 X2
A3 Aiz3

€1te€2

T(K+M\M)(/\23)

€x+€3

U

T(K+M\M)()\12) }

transformation is defined.



Evidence for the tug-the-hook symmetry

There are three evidences, which support this conjecture:
@ ecigenvalue conjecture, which has been proved for several
specific cases:
o for Ug(sly) in [Alekseev,Morozov,Sleptsov'2021];
e in multiplicity-free Uq(sly) case for coinciding incoming
representations for matrices up to size 5 x 5
[Tuba,WenzI'2001; Itoyama et all'2013].

® tug-the-hook symmetry for colored HOMFLY-PT polynomial:
Hi <q, A= qN> = Hﬁmwmm) (q, A= qN> (43)
© highly non-trivial examples for 6j-symbols with multiplicities:

U[[3,1] [3,1] ]_U[[3,2] 3,2]
3,1 [8,2,1,1] 3,2] [7,5,1,1,1]

] . (44)



Thank you for your attention!



