Tug-the-hook symmetry for quantum 6j-symbols

Alexey Sleptsov

ITEP (Kurchatov institute), IITP \& MIPT, Moscow in collaboration with E.Lanina, V.Mishnyakov, N.Tselousov

November 29, 2023
CIS, Yaroslavl

Content

(1) Quantum algebra $U_{q}\left(s l_{N}\right)$ and its finite dim. representations
(2) Definition of 6 j -symbols
(3) Their applications: angular momentum, knot invariants, Turaev-Viro invariants of 3-manifolds
(4) Symmetries of 6 j -symbols:
(1) orthogonality
(2) tetrahedron
(3) pentagon
(4) hexagon
(5) Connection with q-hypergeometric functions and orthogonal polynomials
(6) Tug-the-hook symmetry

Quantum algebra $U_{q}\left(s l_{N}\right)$

Let $\left(c_{i j}\right)_{1 \leq i, j \leq N-1}$ be the Cartan matrix. The quantized universal enveloping algebra $U_{q}\left(s l_{N}\right)$ is defined by the generators $E_{i}, F_{i}, K_{i}=q^{H_{i}}, K_{i}^{-1}$ and the relations:
(1) $K_{i} K_{j}=K_{j} K_{i}=1, \quad K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1$
(2) $K_{i} E_{j} K_{i}^{-1}=q^{c_{i j}} E_{j}, \quad K_{i} F_{j} K_{i}^{-1}=q^{-c_{i j}} F_{j}$
(3) $E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q-q^{-1}}$
(4) $\sum_{s=0}^{1-c_{i j}}(-1)^{s}\left[\begin{array}{c}1-c_{i j} \\ s\end{array}\right] E_{i}^{1-c_{i j}-s} E_{j} E_{i}^{s}=0, \quad i \neq j$

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}, \quad[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}
$$

Representations and Multiplicity space

Finite-dimensional representations of $U_{q}\left(s l_{N}\right)$ enumerated by Young diagrams.

$$
\lambda=\left[r_{1} \geq r_{2} \geq \ldots \geq r_{N-1}\right]=\begin{array}{|l|l}
\square & \\
\hline & \\
\hline & \\
\hline
\end{array}
$$

Let us consider the tensor product of 2 f. -d. irreps $V_{\mu} \otimes V_{\nu}$ and decompose it into irreps:

$$
\begin{equation*}
V_{\mu} \otimes V_{\nu}=\bigoplus_{\rho} M_{\mu \nu}^{\rho} \otimes V_{\rho} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } U_{q}\left(s /_{2}\right) \quad V_{j_{1}} \otimes V_{j_{2}}=V_{\left|j_{1}-j_{2}\right|} \oplus \ldots \oplus V_{j_{1}+j_{2}} \tag{2}
\end{equation*}
$$

Here $M_{\mu \nu}^{\rho}$ is the multiplicity space, i.e. the vector space of highest weight ρ in the product, whose dimension $m=\operatorname{dim}\left(M_{\mu \nu}^{\rho}\right)$ is equal to the number of V_{ρ} in the decomposition. If $m=1$ is one-dimensional, the representation is called multiplicity-free.

Quantum dimension

Let ρ be a half-sum of all positive roots of $s l_{N}$, then there exists an element $K_{2 \rho} \in U_{q}\left(s /_{N}\right)$ defined as

$$
\begin{align*}
K_{2 \rho} & =K_{1}^{n_{1}} K_{2}^{n_{2}} \ldots K_{N-1}^{n_{N-1}}, \tag{3}\\
2 \rho & =\sum_{i=1}^{N-1} n_{i} \alpha_{i}, n_{i} \in \mathbb{N}_{0}, \tag{4}
\end{align*}
$$

where α_{i} are simple roots. The number

$$
\begin{equation*}
D_{\mu}:={ }_{q} \operatorname{Tr}_{V_{\mu}}(1) \equiv \operatorname{Tr}_{V_{\mu}}\left(K_{2 \rho}\right) \tag{5}
\end{equation*}
$$

is called the quantum dimension of V_{μ}.

Two bases

Let us consider three representations $V_{\lambda_{1}} \otimes V_{\lambda_{2}} \otimes V_{\lambda_{3}}$.
Associativity of tensor product implies that $\left(V_{\lambda_{1}} \otimes V_{\lambda_{2}}\right) \otimes V_{\lambda_{3}}$ is isomorphic to $V_{\lambda_{1}} \otimes\left(V_{\lambda_{2}} \otimes V_{\lambda_{3}}\right)$:
$\left(V_{\lambda_{1}} \otimes V_{\lambda_{2}}\right) \otimes V_{\lambda_{3}}=\left(\bigoplus_{\mu} M_{\mu}^{\lambda_{1} \lambda_{2}} \otimes V_{\mu}\right) \otimes V_{\lambda_{3}}=\bigoplus_{\mu, \rho} M_{\mu}^{\lambda_{1} \lambda_{2}} \otimes M_{\rho}^{\mu \lambda_{3}} \otimes V_{\rho}$
$V_{\lambda_{1}} \otimes\left(V_{\lambda_{2}} \otimes V_{\lambda_{3}}\right)=V_{\lambda_{1}} \otimes\left(\bigoplus_{\nu} M_{\nu}^{\lambda_{2} \lambda_{3}} \otimes V_{\nu}\right)=\bigoplus_{\rho, \nu} M_{\rho}^{\lambda_{1} \nu} \otimes M_{\nu}^{\lambda_{2} \lambda_{3}} \otimes V_{\rho}$
Graphically one can depict these bases as follows

6j-symbols

The rotation matrix of one basis (6) into another (7) is called a matrix of 6j-symbols or Racah-Wigner matrix:

$$
\begin{gather*}
U\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
\lambda_{3} & \rho
\end{array}\right]_{m_{1} m_{2}}^{m_{3} m_{4}}: \bigoplus_{\mu} M_{\mu}^{\lambda_{1} \lambda_{2}} \otimes M_{\rho}^{\mu \lambda_{3}} \longrightarrow \underset{\nu}{\bigoplus} M_{\rho}^{\lambda_{1} \nu} \otimes M_{\nu}^{\lambda_{2} \lambda_{3}} \tag{8}\\
\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \mu \\
\lambda_{3} & \rho & \nu
\end{array}\right\}_{m_{1} m_{2}}^{m_{3} m_{4}}=\frac{1}{\sqrt{D_{\mu} \cdot D_{\nu}}} U_{\mu, \nu}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
\lambda_{3} & \rho
\end{array}\right]_{m_{1} m_{2}}^{m_{3} m_{4}} \tag{9}
\end{gather*}
$$

6 j symbols first appeared in the work of E. Wigner in 1940, where they were used as a tool for studying irreducible representations $S O(3)$ and SU(2). In 1942, while studying atomic spectra, G. Racah introduced the concept of recoupling coefficients to describe angular momenta in quantum mechanics.

6j-symbols: Applications

6 j -symbols are used in the generalized theory of angular momentum to describe complex systems: atoms, nuclei, molecules, hadrons. The non-complete list of applications:
(1) nuclear physics (see Landau-Lifshitz. Quantum mechanics, V.3, §108)
(2) QCD (e.g., Landau-Pomeranchuk-Migdal effect)
(3) condensed matter (e.g., ultracold alkaline-earth atoms)
(4) conformal field theories (fusion matrix)
(5) 3d quantum gravity (Ponzano-Regge model)
(6) integrable systems
(7) knot theory (Reshetikhin-Turaev invariants)

8 invariant of 3-manifolds (Turaev-Viro invariants)
(9) topological quantum computer

10 special functions (e.g., orthogonal polynomials)

Addition of angular momenta

The 6 j -symbols arise naturally in the problem concerning the addition of 3 angular momenta. The state of the system depends on coupling scheme:

Wave functions of the coupling schemes are related as follows:

$$
\begin{equation*}
\psi_{j_{23}, J}=\sum_{j_{12}} U_{j_{12}, j_{23}} \cdot \psi_{j_{12}, J} \tag{10}
\end{equation*}
$$

Example of quantum knot invariant I

$\mathcal{K}_{1}=\mathcal{K}_{2} \Leftrightarrow$ Reidemeister moves:

II

III

Let's associate vector space with every strand $\left.\right|_{i} \mapsto V_{i}$. If we define invertible linear operators by

$$
\begin{equation*}
\mathcal{R}_{i}=1_{V_{1}} \otimes 1_{V_{2}} \otimes \ldots \otimes P \check{\mathcal{R}}_{i, i+1} \otimes \ldots \otimes 1_{V_{m}} \in \operatorname{End}\left(V_{1} \otimes \ldots, \otimes V_{m}\right) \tag{11}
\end{equation*}
$$

where $P(x \otimes y)=y \otimes x$ and $\check{\mathcal{R}}$ acts on two $U_{q}\left(s l_{N}\right)$-modules V_{i} and V_{i+1}

$$
\begin{equation*}
\check{\mathcal{R}}_{V, W}=q^{\sum_{i, j} c_{i j}^{-1} H_{i} \otimes H_{j}} \prod_{\text {posit. roots } \beta} \exp _{q}\left[\left(1-q^{-1}\right) E_{\beta} \otimes F_{\beta}\right] \tag{12}
\end{equation*}
$$

then it is well known that $\mathcal{R}_{1}, \ldots, \mathcal{R}_{m-1}$ define a representation of the Artin's braid group B_{m} on m strands:

$$
\begin{align*}
\pi: B_{m} & \rightarrow \operatorname{End}\left(V_{1} \otimes \ldots, \otimes V_{m}\right) \tag{13}\\
\pi\left(\sigma_{i}\right) & =\mathcal{R}_{i}
\end{align*}
$$

where $\sigma_{1}, \ldots, \sigma_{m-1}$ are generators of the braid group B_{m}.

Example of quantum knot invariant II

Any knot can be given as the closure of the corresponding braid. Operators $\mathcal{R}_{1}, \ldots, \mathcal{R}_{m-1}$ satisfies 2 nd and 3 Reidemeister moves. In order to satisfy 1st R -move one should to consider quantum trace:

$$
\begin{equation*}
H_{\lambda}^{\mathcal{K}}\left(q, A=q^{N}\right)={ }_{q} \operatorname{Tr}_{V_{1} \otimes \cdots \otimes V_{m}}\left(\mathcal{R}_{1}^{a_{1}} \mathcal{R}_{2}^{a_{2}} \cdots\right) \tag{14}
\end{equation*}
$$

where $V_{1}=\ldots=V_{m}=V_{\lambda}$, because we consider a knot, which have only 1 component.
This quantum knot invariant in the case of $U_{q}\left(s l_{N}\right)$ is called colored HOMFLY-PT polynomial.
This invariant (14) is a vacuum expectation value $\left\langle W_{R}(\mathcal{K})\right\rangle$ for the Wilson loop correlators in the Chern-Simons theory. It is very interesting, because the Chern-Simons theory is defined in terms of classical Lie algbera, but non-perturbative answer is given in terms of quantum algebra.

Example of quantum knot invariant III

How to calculate this quantity $H_{\lambda}^{\mathcal{K}}\left(q, A=q^{N}\right)={ }_{q} \operatorname{Tr} V_{1} \otimes \cdots \otimes V_{m}\left(\mathcal{R}_{1}^{a_{1}} \mathcal{R}_{2}^{a_{2}} \ldots\right)$?

- Consider the case with 2 strands, where we have only $\mathcal{R}_{1}=P \check{\mathcal{R}}_{V_{1}, V_{2}}$. Its eigenvalues are known [N.Reshetiknin'1987]:

$$
\begin{align*}
& e_{k}\left(\mathcal{R}_{\left.V_{1}, V_{2}\right)= \pm q^{C_{2}}\left(Q_{k}\right)-C_{2}\left(V_{1}\right)-C_{2}\left(V_{2}\right), \quad \text { where } C_{2} \text { is a quadratic }}^{\text {Casimir operator } C_{2}\left(V_{\lambda}\right)=\sum_{(i, j) \in \lambda}(i-j), \quad V_{1} \otimes V_{2}=\bigoplus_{k} Q_{k} .} .\right. \tag{15}
\end{align*}
$$

Example of quantum knot invariant III

How to calculate this quantity $H_{\lambda}^{\mathcal{K}}\left(q, A=q^{N}\right)={ }_{q} \operatorname{Tr} V_{1} \otimes \cdots \otimes V_{m}\left(\mathcal{R}_{1}^{a_{1}} \mathcal{R}_{2}^{a_{2}} \ldots\right)$?

- Consider the case with 2 strands, where we have only $\mathcal{R}_{1}=P \check{\mathcal{R}}_{V_{1}, V_{2}}$. Its eigenvalues are known [N. Reshetiknin'1987]:

$$
\begin{equation*}
e_{k}\left(\mathcal{R}_{V_{1}, V_{2}}\right)= \pm q^{C_{2}\left(Q_{k}\right)-C_{2}\left(V_{1}\right)-C_{2}\left(V_{2}\right)}, \text { where } C_{2} \text { is a quadratic } \tag{15}
\end{equation*}
$$

$$
\text { Casimir operator } C_{2}\left(V_{\lambda}\right)=\sum_{(i, j) \in \lambda}(i-j), \quad V_{1} \otimes V_{2}=\bigoplus_{k} Q_{k}
$$

- For 3 strands we have 2 R-matrices: $\mathcal{R}_{1}=\check{\mathcal{R}} \otimes 1$ and $\mathcal{R}_{2}=1 \otimes \check{\mathcal{R}}$.

Diagonalization: basis $\left(V_{1} \otimes V_{2}\right) \otimes V_{3}$ for \mathcal{R}_{1} and $V_{1} \otimes\left(V_{2} \otimes V_{3}\right)$ for \mathcal{R}_{2}.

With the help of Racah-Wigner matrix we have $\mathcal{R}_{2}=U^{\dagger}\left[\begin{array}{ll}V_{1} & V_{3} \\ V_{2} & V_{4}\end{array}\right] \cdot \operatorname{diag}\left(\mathcal{R}_{2}\right) \cdot U\left[\begin{array}{ll}V_{1} & V_{2} \\ V_{3} & V_{4}\end{array}\right]$.

Symmetries of 6j-symbols: orthogonality

Values and various properties of quantum 6 j -symbols are well-known for $U_{q}\left(s s_{2}\right)$ [A.N.Kirillov and N.Y.Reshetikhin, 1989], but much less is known for $N>2$. Nevertheless, some properties and relations for them are known for an arbitrary N. Let us briefly discuss them [C.R.Lienert and P.H.Butler, 1992].

- Racah matrices are orthogonal:

$$
\sum_{\lambda_{12}}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \tag{16}\\
\lambda_{3} & \lambda_{123} & \lambda_{23}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{3} & \lambda_{123} & \lambda_{23}^{\prime}
\end{array}\right\} D_{\lambda_{12}}=\frac{\delta_{\lambda_{23}, \lambda_{23}^{\prime}}}{\sqrt{D_{\lambda_{23}} \cdot D_{\lambda_{23}^{\prime}}}}
$$

Symmetries of 6j-symbols: tetrahedron I

Representations of $U_{q}\left(s s_{2}\right)$ enumerated by $[j]=\square П \square \square$.
Tensor product rule is given by :
$\left[j_{1}\right] \otimes\left[j_{2}\right]=\left[j_{12}\right], \quad j_{12}=\left|j_{1}-j_{2}\right|, \ldots, j_{1}+j_{2}$.

$$
\left\{\begin{array}{ccc}
{\left[j_{1}\right]} & {\left[j_{2}\right]} & {\left[j_{12}\right]} \\
{\left[j_{3}\right]} & {\left[j_{123}\right]} & {\left[j_{23}\right]}
\end{array}\right\}=
$$

Tetrahedral symmetry group S_{4} contains $4!=24$ elements.

Symmetries of 6j-symbols: tetrahedron I

Representations of $U_{q}\left(s s_{2}\right)$ enumerated by $\left.[j]=\square П П\right\rceil$.
Tensor product rule is given by :
$\left[j_{1}\right] \otimes\left[j_{2}\right]=\left[j_{12}\right], \quad j_{12}=\left|j_{1}-j_{2}\right|, \ldots, j_{1}+j_{2}$.

$$
\left\{\begin{array}{ccc}
{\left[j_{1}\right]} & {\left[j_{2}\right]} & {\left[j_{12}\right]} \\
{\left[j_{3}\right]} & {\left[j_{123}\right]} & {\left[j_{23}\right]}
\end{array}\right\}=
$$

Tetrahedral symmetry group S_{4} contains $4!=24$ elements.
Additional Regge symmetries [T.Regge,1959]:

$$
\left\{\begin{array}{lll}
{\left[j_{1}\right]} & {\left[j_{2}\right]} & {\left[j_{12}\right]} \tag{17}\\
{\left[j_{3}\right]} & {\left[j_{4}\right]} & {\left[j_{23}\right]}
\end{array}\right\}=\left\{\begin{array}{lll}
{\left[p-j_{1}\right]} & {\left[p-j_{2}\right]} & {\left[j_{12}\right]} \\
{\left[p-j_{3}\right]} & {\left[p-j_{4}\right]} & {\left[j_{23}\right]}
\end{array}\right\}
$$

where $p=\frac{1}{2}\left(j_{1}+j_{2}+j_{3}+j_{4}\right)$. In total, for $N=2$ we have 144 symmetries, full symmetry group $S_{4} \times S_{3}$.

Symmetries of 6j-symbols: tetrahedron II

Tetrahedral symmetries are the symmetries between 6-j symbols that are generated by permutations of rows and columns

$$
\begin{align*}
\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{3} & \lambda_{123} & \lambda_{23}
\end{array}\right\}= & \left\{\begin{array}{ccc}
\overline{\lambda_{3}} & \overline{\lambda_{2}} & \overline{\lambda_{23}} \\
\overline{\lambda_{1}} & \overline{\lambda_{123}} & \overline{\lambda_{12}}
\end{array}\right\}= \tag{18}\\
=\left\{\begin{array}{ccc}
\lambda_{3} & \overline{\lambda_{123}} & \overline{\lambda_{12}} \\
\lambda_{1} & \overline{\lambda_{2}} & \overline{\lambda_{23}}
\end{array}\right\}= & \left\{\begin{array}{ccc}
\lambda_{2} & \overline{\lambda_{12}} & \overline{\lambda_{1}} \\
\lambda_{123} & \lambda_{23} & \lambda_{3}
\end{array}\right\}= \tag{19}\\
& =\left\{\begin{array}{lll}
\lambda_{2} & \lambda_{1} & \lambda_{12} \\
\lambda_{123} & \overline{\lambda_{3}} & \overline{\lambda_{23}}
\end{array}\right\}, \tag{20}
\end{align*}
$$

where $\bar{\lambda}$ denotes conjugate representation: $\lambda \otimes \bar{\lambda} \ni \varnothing$

Turaev-Viro invariants of 3-manifolds

Let us fix a triangulation \triangle of a compact 3-manifold \mathcal{M}. For simplicity we assume that \mathcal{M} is closed $\partial \mathcal{M}=\varnothing$. Let us consider irreps of $U_{q}\left(s l_{2}\right)$ and put $q=\exp \left(\frac{2 \pi i}{k}\right), k>2$. We associate representation j_{e} to each edge e as follows:

$$
\left\{\begin{array}{ccc}
{\left[j_{1}\right]} & {\left[j_{2}\right]} & {\left[j_{12}\right]} \\
{\left[j_{3}\right]} & {\left[j_{123}\right]} & {\left[j_{23}\right]}
\end{array}\right\}=
$$

$$
T V(q, \triangle):=\left(-\frac{\left(q-q^{-1}\right)^{2}}{2 k}\right)^{v} \sum_{j=1}^{k} \prod_{e \in \triangle} D_{j_{e}} \prod_{t \in \triangle}\left\{\begin{array}{lcc}
{\left[j_{1}\right]} & {\left[j_{2}\right]} & {\left[j_{12}\right]} \tag{21}\\
{\left[j_{3}\right]} & {\left[j_{123}\right]} & {\left[j_{23}\right]}
\end{array}\right\}
$$

According to the theorem of V.G.Turaev and O.Y.Viro [1990] the quantity $T V(q, \triangle)$ is independent of the triangulation \triangle, but depends only on the topology of \mathcal{M}.

Symmetries of 6j-symbols: Racah identity

The Racah back-coupling rule is a general property of 6-j symbols:

$$
\begin{array}{r}
q^{C_{2}\left(\lambda_{1}\right)+C_{2}\left(\lambda_{3}\right)+C_{2}\left(\lambda_{12}\right)+C_{2}\left(\lambda_{23}\right)-C_{2}\left(\lambda_{2}\right)-C_{2}\left(\lambda_{123}\right)}\left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{3} & \lambda_{123} & \lambda_{23}
\end{array}\right\}= \\
=\sum_{\nu} \pm D_{\nu} q^{C_{2}(\nu)}\left\{\begin{array}{ccc}
\lambda_{23} & \nu & \lambda_{12} \\
\lambda_{3} & \lambda_{123} & \lambda_{1}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{23} & \nu & \overline{\lambda_{3}}
\end{array}\right\}
\end{array}
$$

This property follows from the hexagon axiom of R-matrix $\hat{\mathcal{R}}_{12,3}=\hat{\mathcal{R}}_{1,2} \hat{\mathcal{R}}_{2,3}$:

Symmetries of 6 j -symbols: pentagon I

There are 5 possibilities to decompose the tensor product of $T_{\lambda_{1}} \otimes T_{\lambda_{2}} \otimes T_{\lambda_{3}} \otimes T_{\lambda_{4}}$ into irreducible representations:

$$
\begin{align*}
& \left(\left(T_{\lambda_{1}} \otimes T_{\lambda_{2}}\right) \otimes T_{\lambda_{3}}\right) \otimes T_{\lambda_{4}} \tag{22}\\
& \left(T_{\lambda_{1}} \otimes\left(T_{\lambda_{2}} \otimes T_{\lambda_{3}}\right)\right) \otimes T_{\lambda_{4}} \tag{23}\\
& \left(T_{\lambda_{1}} \otimes T_{\lambda_{2}}\right) \otimes\left(T_{\lambda_{3}} \otimes T_{\lambda_{4}}\right) \tag{24}\\
& T_{\lambda_{1}} \otimes\left(\left(T_{\lambda_{2}} \otimes T_{\lambda_{3}}\right) \otimes T_{\lambda_{4}}\right) \tag{25}\\
& T_{\lambda_{1}} \otimes\left(T_{\lambda_{2}} \otimes\left(T_{\lambda_{3}} \otimes T_{\lambda_{4}}\right)\right) \tag{26}
\end{align*}
$$

We can go from (22) to (26) by (22) \rightarrow (23) \rightarrow (25) \rightarrow (26) and also by the chain (22) \rightarrow (24) \rightarrow (26) using 6j-symbols at each step.

Symmetries of $6 j$-symbols: pentagon II

By this way we get Biedenharn-Elliott identity ('1953), or pentagon identity:

$$
\begin{gathered}
\sum_{\lambda_{23}} D_{\lambda_{23}}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{3} & \lambda_{123} & \lambda_{23}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{23} & \lambda_{123} \\
\lambda_{4} & \lambda_{1234} & \lambda_{234}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{2} & \lambda_{3} & \lambda_{23} \\
\lambda_{4} & \lambda_{234} & \lambda_{34}
\end{array}\right\}= \\
=\left\{\begin{array}{ccc}
\lambda_{12} & \lambda_{3} & \lambda_{123} \\
\lambda_{4} & \lambda_{1234} & \lambda_{34}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{34} & \lambda_{1234} & \lambda_{234}
\end{array}\right\} .
\end{gathered}
$$

Theorem (Butler'1981)

Non-primitive 6j-symbols can always be converted to primitive ones. $\left\{\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \varnothing \\ \lambda_{3} & \lambda_{123} & \lambda_{23}\end{array}\right\},\left\{\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \square \text { or } \bar{\square} \\ \lambda_{3} & \lambda_{123} & \lambda_{23}\end{array}\right\} \Rightarrow\left\{\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda_{12} \\ \lambda_{3} & \lambda_{123} & \lambda_{23}\end{array}\right\}$ Recipe. Let us calculate $\left\{\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda_{12} \\ \lambda_{34} & \lambda_{1234} & \lambda_{234}\end{array}\right\}$. Let λ_{12} be a representation with the smallest number of boxes. Put $\lambda_{3}=\bar{\square}$ and take λ_{123} one box fewer than λ_{12} (fusion rules are ok).

Known results

- $U_{q}\left(s /_{2}\right)$, A.N.Kirillov and N.Y.Reshetikhin, 1989

$$
\begin{gathered}
\left\{\begin{array}{lll}
r_{1} & r_{2} & i \\
r_{3} & r_{4} & j
\end{array}\right\}=\sqrt{[2 i+1][2 j+1]} \cdot(-1)^{\sum_{m=1}^{4} r_{m}} \cdot \theta\left(r_{1}, r_{2}, i\right) \theta\left(r_{3}, r_{4}, i\right) \theta\left(r_{4}, r_{1}, j\right) \theta\left(r_{2}, r_{3}, j\right) \times \\
\quad \times \sum_{k \geq 0} \frac{(-1)^{k}[k+1]!\cdot\left[k-r_{1}-r_{2}-j\right]!^{-1}\left[k-r_{3}-r_{4}-i\right]!^{-1}\left[k-r_{1}-r_{4}-j\right]!^{-1}\left[k-r_{2}-r_{3}-j\right]!^{-1}}{\left[r_{1}+r_{2}+r_{3}+r_{4}-k\right]!\left[r_{1}+r_{3}+i+j-k\right]!\left[r_{2}+r_{4}+i+j-k\right]!} \\
\\
{[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}, \theta(a, b, c)=\sqrt{\frac{[a-b+c]![b-a+c]![a+b-c]!}{[a+b+c+1]!}}}
\end{gathered}
$$

Known results

- $U_{q}\left(s /_{2}\right)$, A.N.Kirillov and N.Y.Reshetikhin, 1989

$$
\begin{gathered}
\left\{\begin{array}{lll}
r_{1} & r_{2} & i \\
r_{3} & r_{4} & j
\end{array}\right\}=\sqrt{[2 i+1][2 j+1]} \cdot(-1)^{\sum_{m=1}^{4} r_{m}} \cdot \theta\left(r_{1}, r_{2}, i\right) \theta\left(r_{3}, r_{4}, i\right) \theta\left(r_{4}, r_{1}, j\right) \theta\left(r_{2}, r_{3}, j\right) \times \\
\\
\quad \times \sum_{k \geq 0} \frac{(-1)^{k}[k+1]!\cdot\left[k-r_{1}-r_{2}-i\right]!^{-1}\left[k-r_{3}-r_{4}-i\right]!^{-1}\left[k-r_{1}-r_{4}-j\right]!^{-1}\left[k-r_{2}-r_{3}-j\right]!^{-1}}{\left[r_{1}+r_{2}+r_{3}+r_{4}-k\right]!\left[r_{1}+r_{3}+i+j-k\right]!\left[r_{2}+r_{4}+i+j-k\right]!}, \\
\\
{[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}, \theta(a, b, c)=\sqrt{\frac{[a-b+c]![b-a+c]![a+b-c]!}{[a+b+c+1]!}}} \\
\\
\bullet \\
U_{q}\left(s /_{N}\right), \text { S. Alisauskas, 1995, }\left\{\begin{array}{lll}
{\left[r_{1}\right]} & \lambda_{2} & \lambda_{12} \\
{\left[r_{3}\right]} & \lambda_{123} & \lambda_{23}
\end{array}\right\}_{11}^{11}
\end{gathered}
$$

Solution of the pentagon identity in $U_{q}\left(s /_{2}\right)$

K.S.Rao, T.S.Santhanam, R.A. Gustafson, 1987

$$
\begin{array}{r}
\sum_{\lambda_{23}} D_{\lambda_{23}}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{3} & \lambda_{123} & \lambda_{23}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{23} & \lambda_{123} \\
\lambda_{4} & \lambda_{1234} & \lambda_{234}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{2} & \lambda_{3} & \lambda_{23} \\
\lambda_{4} & \lambda_{234} & \lambda_{34}
\end{array}\right\}= \\
=\left\{\begin{array}{ccc}
\lambda_{12} & \lambda_{3} & \lambda_{123} \\
\lambda_{4} & \lambda_{1234} & \lambda_{34}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{34} & \lambda_{1234} & \lambda_{234}
\end{array}\right\} \tag{28}
\end{array}
$$

Solution of the pentagon identity in $U_{q}\left(s /_{2}\right)$

K.S.Rao, T.S.Santhanam, R.A. Gustafson, 1987

$$
\begin{array}{r}
\sum_{\lambda_{23}} D_{\lambda_{23}}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{3} & \lambda_{123} & \lambda_{23}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{23} & \lambda_{123} \\
\lambda_{4} & \lambda_{1234} & \lambda_{234}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{2} & \lambda_{3} & \lambda_{23} \\
\lambda_{4} & \lambda_{234} & \lambda_{34}
\end{array}\right\}= \\
 \tag{28}\\
=\left\{\begin{array}{ccc}
\lambda_{12} & \lambda_{3} & \lambda_{123} \\
\lambda_{4} & \lambda_{1234} & \lambda_{34}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{34} & \lambda_{1234} & \lambda_{234}
\end{array}\right\}
\end{array}
$$

$\lambda_{1}=\left[r_{1}\right], \quad \lambda_{2}=\left[r_{2}\right], \quad \lambda_{3}=\left[r_{3}\right], \quad \lambda_{12}=\left[r_{12}\right], \quad \lambda_{23}=\left[r_{23}\right]$
$\lambda_{4}=[2], \quad \lambda_{34}=\left[r_{3}\right] \in \lambda_{3} \otimes \lambda_{4}=\left\{\left[r_{3}^{\prime}-2\right],\left[r_{3}^{\prime}\right],\left[r_{3}^{\prime}+2\right]\right\}$
$\lambda_{123}=\lambda_{1234}=[R], \quad \lambda_{234}=[n]$

Solution of the pentagon identity in $U_{q}\left(s l_{2}\right)$

K.S.Rao, T.S.Santhanam, R.A.Gustafson, 1987

$$
\begin{align*}
& \sum_{\lambda_{23}} D_{\lambda_{23}}\left\{\begin{array}{ccc}
\boldsymbol{\lambda}_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{3} & \lambda_{123} & \lambda_{23}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{23} & \lambda_{123} \\
\lambda_{4} & \lambda_{1234} & \lambda_{234}
\end{array}\right\}\left\{\begin{array}{ccc}
\lambda_{2} & \lambda_{3} & \lambda_{23} \\
\lambda_{4} & \lambda_{234} & \lambda_{34}
\end{array}\right\}= \\
& =\left\{\begin{array}{ccc}
\lambda_{12} & \lambda_{3} & \lambda_{123} \\
\lambda_{4} & \lambda_{1234} & \lambda_{34}
\end{array}\right\}\left\{\begin{array}{ccc}
\boldsymbol{\lambda}_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{34} & \lambda_{1234} & \lambda_{234}
\end{array}\right\} \tag{28}\\
& \lambda_{1}=\left[r_{1}\right], \quad \lambda_{2}=\left[r_{2}\right], \quad \lambda_{3}=\left[r_{3}\right], \quad \lambda_{12}=\left[r_{12}\right], \quad \lambda_{23}=\left[r_{23}\right] \\
& \lambda_{4}=[2], \quad \lambda_{34}=\left[r_{3}\right] \in \lambda_{3} \otimes \lambda_{4}=\left\{\left[r_{3}^{\prime}-2\right],\left[r_{3}^{\prime}\right],\left[r_{3}^{\prime}+2\right]\right\} \\
& \lambda_{123}=\lambda_{1234}=[R], \quad \lambda_{234}=[n] \\
& \sum_{r_{23}} D_{r_{23}}\left\{\begin{array}{lll}
r_{1} & r_{2} & r_{12} \\
r_{3} & \boldsymbol{R} & r_{23}
\end{array}\right\}\left\{\begin{array}{ccc}
r_{1} & r_{23} & R \\
2 & R & n
\end{array}\right\}\left\{\begin{array}{ccc}
r_{2} & r_{3} & r_{23} \\
2 & n & r_{3}
\end{array}\right\}=\left\{\begin{array}{ccc}
r_{12} & r_{3} & R \\
2 & R & r_{3}
\end{array}\right\}\left\{\begin{array}{ccc}
r_{1} & r_{2} & r_{12} \\
r_{3} & \boldsymbol{R} & \boldsymbol{n}
\end{array}\right\} \\
& r_{23} \in[2] \otimes[n]=[n-2] \oplus[n] \oplus[n+2], \quad x:=r_{12} \tag{29}\\
& \sum_{i=-1}^{1} c_{i}\left\{\begin{array}{ccc}
r_{1} & r_{2} & \mathbf{x} \\
r_{3} & R & \mathbf{n}+2 i
\end{array}\right\}=\left\{\begin{array}{ccc}
\mathbf{x} & r_{3} & R \\
2 & R & r_{3}
\end{array}\right\}\left\{\begin{array}{lll}
r_{1} & r_{2} & \mathbf{x} \\
r_{3} & R & \mathbf{n}
\end{array}\right\} \tag{30}
\end{align*}
$$

q -Hypergeometric series

The q-hypergeometric series is defined as:

$$
{ }_{r} \phi_{p}\left(\begin{array}{lll}
a_{1} & \ldots & a_{j} \tag{31}\\
b_{1} & \ldots & b_{k}
\end{array} q, z\right) \equiv \sum_{n=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{n}}{\left(b_{1}, \ldots, b_{p} ; q\right)_{n}}\left((-1)^{n} q^{\binom{n}{2}}\right)^{1+p-r} \frac{z^{n}}{(q, q)}
$$

where $(a, q)_{n} \equiv \prod_{k=0}^{n-1}\left(1-a q^{k}\right)$ is a q-Pochhammer symbol. In the case $r=p+1$ a more convenient form is:

$$
{ }_{p+1} \Phi_{p}\left(\begin{array}{c}
a_{1}, \ldots, a_{p}, a_{p+1} \tag{32}\\
b_{1}, \ldots, b_{p}
\end{array} ; q, z\right) \equiv{ }_{p+1} \phi_{p}\left(\begin{array}{c}
q^{a_{1}}, \ldots, q^{a_{p}}, q^{a_{p+1}} \\
q^{b_{1}}, \ldots, q^{b_{p}}
\end{array} ; q, z\right) .
$$

because it may be reformulated in terms of q-factorials:

$$
{ }_{p+1} \Phi_{p}\left(\begin{array}{c}
a_{1}+1, \ldots, a_{p}+1, a_{p+1}+1 \\
b_{1}+1, \ldots, b_{p}+1
\end{array} q_{q}, z\right)=\sum_{n=0}^{\infty} \frac{\left[a_{1}+n\right]!}{\left[a_{1}\right]!} \cdots \frac{\left[a_{p+1}+n\right]!}{\left[a_{p+1}\right]!} \frac{\left[b_{1}\right]!}{\left[b_{1}+n\right]!} \cdots \frac{\left[b_{p}\right]!}{\left[b_{p}+n\right]!} \frac{z^{n}}{[n]!} .
$$

6j-symbol via q-hypergeometric series

With the help of Sears' transformation

$$
{ }_{4} \Phi_{3}\left(\begin{array}{c}
x, y, z, n \tag{33}\\
u, v, w
\end{array} ; q, q\right)=\frac{[v-z-n-1]![u-z-n-1]![v-1]![u-1]!}{[v-z-1]![v-n-1]![u-z-1]![u-n-1]!}{ }_{4} \Phi_{3}\left(\begin{array}{c}
w-x, w-y, z, n \\
1-u+z+n, 1-v+z+n, w
\end{array} ; q, q\right)
$$

one can transform Kirillov-Reshetikhin's answer into the following

$$
\begin{gather*}
\left\{\begin{array}{lll}
r_{1} & r_{2} & r_{12} \\
r_{3} & R & r_{23}
\end{array}\right\}=K \cdot{ }_{4} \Phi_{3}\left(\begin{array}{c}
a_{1}, a_{2}, a_{3}, a_{4} \\
b_{1}, b_{2}, b_{3}
\end{array} q, q\right) \tag{34}\\
2 a_{i}=\left(\begin{array}{c}
-r_{1}-r_{2}+r_{12} \\
-r_{1}-r_{2}-r_{12}-2 \\
-r_{1}-R+r_{23} \\
-r_{1}-R-r_{23}-2
\end{array}\right), \quad 2 b_{i}=\left(\begin{array}{c}
-r_{1}-r_{2}-r_{3}-R-2 \\
-2 r_{1} \\
-2 r_{1}
\end{array}\right), \tag{35}
\end{gather*}
$$

$$
K=\sqrt{\frac{\left[\frac{r_{1}-R+r_{23}}{2}\right]!\left[\frac{r_{23}-r_{3}+r_{2}}{2}\right]!}{\left[\frac{-r_{1}+R+r_{23}}{2}\right]!\left[\frac{R+r_{1}+2+r_{23}}{2}\right]!}} \sqrt{\frac{1}{\left[\frac{r_{3}-r_{2}+r_{23}}{2}\right]!\left[\frac{r_{2}+r_{23}+2+r_{3}}{2}\right]!\left[\frac{R+r_{1}-r_{23}}{2}\right]!\left[\frac{r_{3}+r_{2}-r_{23}}{2}\right]!}}
$$

q-Racah polynomial

$$
\Re_{n}(z(x) ; a, b, c, d \mid q)={ }_{4} \Phi_{3}\left(\begin{array}{c}
-n, n+a+b+1,-x, x+c+d+1 \\
a+1, b+d+1, c+1
\end{array} ; q, q\right)
$$

where $n=0,1, \ldots, L$ is the degree of the polynomial in variable $z(x):=[x][x+c+d+1]$
Three-term recurrence relation:
$[x][x+c+d+1] \mathfrak{R}_{n}(z(x))=A_{n} \cdot \mathfrak{R}_{n+1}(z(x))-\left(A_{n}+C_{n}\right) \cdot \Re_{n}(z(x))+C_{n} \cdot \mathfrak{R}_{n-1}(z(x))$
with coefficients specified for q-Racah polynomial:

$$
\begin{align*}
& A_{n}=\frac{[n+a+1][n+a+b+1][n+b+d+1][n+c+1]}{[2 n+a+b+1][2 n+a+b+2]} \tag{36}\\
& C_{n}=\frac{[n][n+a+b-c][n+a-d][n+b]}{[2 n+a+b][2 n+a+b+1]}
\end{align*}
$$

$$
\begin{equation*}
\sum_{x} w(x) \Re_{n}(z(x)) \Re_{m}(z(x))=h_{n} d_{n m} \tag{37}
\end{equation*}
$$

6 j and q -Racah polynomial

$$
\begin{gathered}
\left\{\begin{array}{lll}
r_{1} & r_{2} & r_{12} \\
r_{3} & R & r_{23}
\end{array}\right\}=\frac{1}{K} \cdot \Re_{n}(\nu(x) ; \alpha, \beta, \gamma, \delta \mid q), \text { where } \\
\alpha=-r_{3}-1, \beta=-r_{2}-1, \delta=\frac{r_{1}-R-r_{3}+r_{2}}{2}, \gamma=-\frac{R+r_{1}+r_{3}+r_{2}}{2}-2, \\
n=\frac{r_{3}+r_{2}-r_{23}}{2}, x=\frac{r_{3}+R-r_{12}}{2}
\end{gathered}
$$

Orthogonal relation for q-Racah polynomials

$$
\begin{equation*}
\sum_{x} P_{n}(\nu(x)) P_{n}(\nu(x)) \cdot \frac{D(\nu) D(\mu)}{K^{2}}=1 \tag{39}
\end{equation*}
$$

comes from orthogonal relation for $6 j$-symbols up to normalization K^{2} :

$$
\sum_{r_{12}}\left\{\begin{array}{lll}
r_{1} & r_{2} & r_{12} \tag{40}\\
r_{3} & R & r_{23}
\end{array}\right\}\left\{\begin{array}{lll}
r_{1} & r_{2} & r_{12} \\
r_{3} & R & r_{23}
\end{array}\right\} D(\nu) D(\mu)=1
$$

Tug-the-hook symmetry I

A Young diagram is placed inside an appropriate $(K+M \mid M)$ fat hook.
Parametrize the first K rows by their length $R_{i}, i=1, \ldots, K$, the rest rows are parametrized by shifted Frobenius variables

$$
\begin{equation*}
\alpha_{i}=R_{i}-(i-K)+1, \beta_{i}=R_{i-K}^{\prime}-i+1, i=K+1, \ldots, K+M \tag{41}
\end{equation*}
$$

The tug-the-hook transformation pulls the Young diagram inside the fat hook:

$$
\begin{equation*}
\mathbf{T}_{\epsilon}^{(K+M \mid M)}: R_{i} \longrightarrow R_{i}-\epsilon, \quad \alpha_{i} \longrightarrow \alpha_{i}-\epsilon, \quad \beta_{i} \longrightarrow \beta_{i}+\epsilon \tag{42}
\end{equation*}
$$

where ϵ is the corresponding shift of the diagram.

Tug-the-hook symmetry II

Conjecture (Lanina,Sleptsov'2022)

Given arbitrary irreducible finite-dimensional representations

$$
\begin{gathered}
V_{\lambda_{1}}, \quad V_{\lambda_{2}}, V_{\lambda_{3}}, \\
V_{\lambda_{12}} \in V_{\lambda_{1}} \otimes V_{\lambda_{2}}, \quad V_{\lambda_{23}} \in V_{\lambda_{2}} \otimes V_{\lambda_{3}}, \\
V_{\lambda_{123}} \in V_{\lambda_{1}} \otimes V_{\lambda_{2}} \otimes V_{\lambda_{3}}
\end{gathered}
$$

of $U_{q}\left(s l_{N}\right)$ for generic q, Racah coefficients are invariant under the tug-the-hook transformation:
$U\left[\begin{array}{cc|c}\lambda_{1} & \lambda_{2} & \lambda_{12} \\ \lambda_{3} & \lambda_{123} & \lambda_{23}\end{array}\right]=U\left[\begin{array}{cc|c}\mathbf{T}_{\epsilon_{1}}^{(K+M \mid M)}\left(\lambda_{1}\right) & \mathbf{T}_{\epsilon_{2}}^{(K+M \mid M)}\left(\lambda_{2}\right) & \mathbf{T}_{\epsilon_{1}+\epsilon_{2}}^{(K+M \mid M)}\left(\lambda_{12}\right) \\ \mathbf{T}_{\epsilon_{3}}^{(K+M \mid M)}\left(\lambda_{3}\right) & \mathbf{T}_{\epsilon_{1}+\epsilon_{2}+\epsilon_{3}}^{(K+M \mid M)}\left(\lambda_{123}\right) & \mathbf{T}_{\epsilon_{2}+\epsilon_{3}}^{(K+M \mid M)}\left(\lambda_{23}\right)\end{array}\right]$
for K, M and integer shifts $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ for which the tug-the-hook transformation is defined.

Evidence for the tug-the-hook symmetry

There are three evidences, which support this conjecture:
(1) eigenvalue conjecture, which has been proved for several specific cases:

- for $U_{q}\left(\mathfrak{s l}_{2}\right)$ in [Alekseev,Morozov,Sleptsov'2021];
- in multiplicity-free $U_{q}\left(\mathfrak{s l}_{N}\right)$ case for coinciding incoming representations for matrices up to size 5×5 [Tuba,Wenzl'2001; Itoyama et all'2013].
(2) tug-the-hook symmetry for colored HOMFLY-PT polynomial:

$$
\begin{equation*}
\mathcal{H}_{R}^{\mathcal{K}}\left(q, A=q^{N}\right)=\mathcal{H}_{\mathbf{T}_{\epsilon}^{(N+M \mid M)}(R)}^{\mathcal{K}}\left(q, A=q^{N}\right) \tag{43}
\end{equation*}
$$

(3) highly non-trivial examples for 6 j -symbols with multiplicities:

$$
U\left[\begin{array}{cc}
{[3,1]} & {[3,1]} \tag{44}\\
{[3,1]} & {[8,2,1,1]}
\end{array}\right]=U\left[\begin{array}{cc}
{[3,2]} & {[3,2]} \\
{[3,2]} & {[7,5,1,1,1]}
\end{array}\right]
$$

Thank you for your attention!

