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Introduction

Let zo, a =1,..., N, be m x m matrices. How to define a
Poisson brackets on the vector space of functions of the form
tr P(x1,...,xy), where P ia s (non-commutative) polynomial
with coefficients over C?

A naive version

Consider N m2—dimensional Poisson brackets defined on
functions of entries x , of matrices z,.

Definition. A Poisson bracket defined on the matrix
entries is called a trace bracket if

o the bracket is GL,,-invariant,

e for any two matrix polynomials P;(z1,...,xn), @=1,2
with coefficients from C the bracket between their traces is
equal to the trace of some matrix polynomial Pj .



Remark. For any Hamiltonian of the form H = tr P, where
P is a matrix polynomial, and for any Poisson trace bracket,
equations of motion can be written in the matrix form

dzq

= - Fa(x)7 X = (561, ...,SCN). (1)

Theorem. i). Any constant trace Poisson bracket has the
form

{ zoﬂ ﬁ} 5J6 6015’ (2)

ii). Any linear trace bracket is written as

{ zoc’ ,8} - bgﬁ 5765 —b; oexz/ ’y(szj ’ (3)

iii). Any quadratic trace bracket is given by the formula

{w ol gy =105l ad, + alGal ol 6) — afak ol 67, (4)



Furthermore,
1). The bracket (2) is a Poisson bracket iff

Cap = —Cpa-
2). The formula (3) defines a Poisson bracket, iff
Bopo _po ph
ba,BbW - b&#bb’v‘

3) The formula (4) defines a Poisson bracket iff the relations

ge __ €0

TQB = _T,Ba?
Ao v Mo v Vo, AL
TapTor T T3 oa T Tralog = 0,

OAN UV __ o VA
Aaplre = A7q063;

no v wy .o
+ ag

oN _pv
aaﬁaUT - aaﬂTTO' O'TBT'
and
Ao _puv oV, A\l [2Z5 PN
aaﬁa’ra - aaﬂra‘r + a’o’ﬁrTa

hold.



Remark. The formula (5) means that b7 are structural
constants of an associative algebra A. A direct verification
shows that the bracket (3) is nothing but the Lie — Kirillov
—Konstant bracket defined by the Lie algebra corresponding to
the associative algebra Mat,, ®.A.

Remark. The relations (6) and (7) mean that the tensor r
satisfies the associative Yang—Baxter equation (or the
Rota—Baxter equation ).

An important subclass of the Poisson brackets (4)
corresponds to the case of zero tensor a.

Definition. An associative algebra 4 with multiplication o
is called anti-Frobenius algebra if it possesses a non-degenerate
antisymmetric bilinear form ( , ) that satisfies the condition

(r,y02) +(y, zox) + (2, 20y) =0 (11)

for any x,y, 2z € A. In other words, the form ( , ) defines a
1-cocycle on A.



Theorem. There is a one-to-one correspondence between
solutions of the system (6), (7) up to equivalence and exact
representations of anti-Frobenius algebras up to isomorphism.

Construction to one side. Suppose we have an exact
m-dimensional representation of an anti-Frobenius algebra .A.
Let matrices y, with entries y;V form a basis in A . Denote the
matrix of the bilinear form on A by G. Let ¢®® be entries of
G~1. It can be verified that the tensor

Tkl Z gaﬁykaylﬂ, 5, k,l=1,...,m,
7ﬁ ]'

satisfies the relations (6), (7).

Open problem. Describe all anti-Frobenius algebras A of
the form

A=SdM,

where S is a semisimple associative algebra, and M is an
S-bimodule such that M? = {0}.



Non-abelian Poisson brackets on
free associative algebras

The Poisson brackets, which we considered above, were
defined on functions of the entries of the matrices
T, @« =1,..., N and allowed a restriction on the vector space
of traces of matrix polynomials.

Question. How to generalize these Poisson brackets to the
case of free associative algebra?

A Poisson structure on a commutative associative algebra
A is given by a Lie bracket

{,}:Ax A~ A,
satisfying the the Leibniz rule

{a, bc} ={a, b} c+b{a, c}, a,b,c € A.



A naive generalization of this definition to the case of a
non-commutative associative algebra A is not informative due to
the lack of examples of such brackets, other than the usual
commutator.

We consider the version of the Hamiltonian formalism on
the free associative algebra A, proposed by M. Kontsevich. Our
non-abelian Poisson brackets are defined only between
traces of elements from A.

The traces are regarded as elements of the quotient space

T = AJ[A, Al

Let A be the free associative algebra C[zy,...,zy ] with the
product o. For any element a € A we denote by L, (respectively
R,) the operator of left (respectively, right) multiplication by a:

Ly(X)=aoX, R,(X)=Xoa, X e A
Definition. Denote by X the associative algebra generated

by all operators of left and right multiplications by the genera-
tors x;. This algebra is called the algebra of local operators.



Definition. A non-abelian Poisson bracket is a bracket of
the form

where © € X ® gly, that satisfies the conditions

{f.g}+{9.f} ~0, (13)
{f7{g¢h}}+{gv {h,f}}+{h,{f,g}}N0 (14)

Here ~ 0 means equality to zero in 7.

Let H(x) € A, where x = (z1,...,2y). Then
grady, (H) € AV is a vector

grad, (H) = (gradxl(H), e ,grade(H)>,
the components of which are uniquely defined by the formula
d
%H(xh ceey T 65]67 s 7xN)’€:O ~ 6kgrad1‘k<H(X>> ’

where §; are additional non-abelian variables.



Example. Let A = [u, v]. Let us find the gradient of the
polynomial H = u?v? — uvuu. We have

d
&H(u—i- 6(51, U)‘ez(] =

Sruv? 4+ ud1v? — d1vuv — uvdiv ~ & (uv2 +v%u — 20uv).
Therefore, grad, (H) = uv? + v?*u — 2vuv = [v, [v,u]]. Similarly,

grad, (H) = vu? + u?v — 2uvu = [u, [u,v]] and

grady (H) = ([o, [o,ull, [, [u,0])).

where x = (u, v).
Lemma. If f € [A, A], then grad,(f) =0.

From this lemma it follows that the mapping
grad, : T — AV is well defined and the formula (12) defines a
bracket on the vector space 7.



For any element f € A, or its equivalence class in T, we
denote by f; the components of its gradient. Sometimes f; is
denoted by %, and % is called “non-abelian partial derivative”.

Proposition. For any element f € A the identity

Z fir i) = (15)
=1

is fulfilled.

Any non-abelian Hamiltonian derivation (or vector field) on

A has the form J
X
E = @(gradxH), (16)

where H(x) € A/[A, A] is the Hamiltonian, and © is the
“Hamiltonian operator” or the “Poisson tensor”. According to the
definition, © is an N x N matrix with entries being local
operators.



Question. Suppose we have two Hamiltonian derivations
Dy and D, defined by

dx

T @(gradle), (17)
and
Z—j = @(gradxﬂg) (18)

Is it true that the commutator [Dy, D;] of these derivations is
the Hamiltonian derivation corresponding to {Hy, Ha} 7



Linear non-abelian Poisson brackets are given by
Hamiltonian operators with the entries of the form

©ij = bf; Ryy + bf Loy,

where
1k _ k
bl-j = —bji.

For quadratic non-abelian Poisson brackets, we have

.. — P4 ~Pbq pq
@%J - aij prLZ’q + aij Rl’prq + 7nij prqu’
where
—pq _ _ _qp pg __ _ qp
Ay = —0j; g = T

If these constants satisfy conditions (5)—(10) then the
corresponding non-abelian brackets satisfy (13), (14).



Any non-abelian Poisson brackets can be extended to the

entries of the matrices x1,--- ,zn as follows. We have
. ) , ,
J ? J _ i
T, = tr(€fza), x5 = tr(ejzg),

where 62 denotes the matrix units. Set

{xia, xg,ﬂ} = tr(eé @aﬁ(e;,)). (23)
In the linear case (19), (20) we find that

J J Y J J .7
(] o @l g} = b2 gl 6% — 0} oy 6]

that is, the extended Poisson bracket coincides with (3).

In the same way, any non-abelian Poisson brackets can be
extended to matrix entries using the formula (23). However, the
corresponding trace brackets not always satisfy the Jacobi
identity !



Non-abelian Poisson brackets on
the projective space

An usual (scalar) Poisson structure on an affine space AN
over C has the form

of dg
= P; 24
{f7 g} Z (%) awz 81'] ( )
1<4,j<N
where z1, ...,z are coordinates on A" and P;; € Clzy, ..., xn]
are fixed polynomials. The formula (24) should define a Lie
algebra structure on the space of polynomials in z1, ...,z

Which of these Poisson structures can be descended to
CPN=17 In fact, CPN=1 = AN /C*, where the group C* acts on
A" by dilatations x; — ax;. The bracket (24) should be
invariant with respect to this action which means that P; ; have
to be homogeneous quadratic polynomials and the formula (24)
takes the form

gt= 3 gl gg (25)

1<i,j,a,b<N



To descend this Poisson structure to CPN~! we introduce
affine coordinates u; = f};, 1=1...N — 1. If f, g are functions in
uy, ..., un—1, then, after the change of variables, the formula (25)

can be rewritten as

ab ab ab of 9g
{f,9} = g (r o uqup + re N UaUpUy + T Nuaubu]) -
A 8u,~ 8uj
1<6,j<N—1,
1<a,b<N

where uy = 1.
Example. The simplest example of elliptic homogeneous
Poisson brackets is given by

{931,332}=t931$2+93§7 {9327333}=t932$3+96%,

{z3,21} = tx123 + x%,

where t € C is a parameter. In the affine coordinates

u; = & uy = 22 this Poisson structure has the form
x3’ T3

{ul, UQ} = Ui’ +u% + 3tujug + 1.



The first example of an elliptic Poisson bracket with 4
generators was constructed by E. Sklyanin.

A. Odesskii and B. Feygin constructed a wide class of
elliptic brackets of the form (25) named g, (7). Here n, k € Z,
1 <k < n and n, k are coprime.

The bracket g, ,(7) admits a discrete group of
automorphisms acting on generators x1,...,z, by x; — &'a;
and x; — x;11, where ¢ is a primitive n-th root of unity.

The Poisson brackets ¢, ,—1(7) are trivial.

An explicit formula for the coefficients of g, 1(7) can be
written in terms of theta constants.



Explicitly, the Poisson brackets in ¢, 1 (7) are the following:

05 _;(0) Bij—(0) k—1)(0)
giri)l = [ 225y (j—i 2+ J Z+7“( ) Tiip
o} (‘%i(O) Or(j- z>(0) ’ Z ekr 0j—i—r(0) "’

r#0,7
(26)

Notice that the algebra @y (1, 7) and the corresponding
Poisson algebra gy, (7) both admit the same discrete group of
automorphisms. Namely, a central extension of Z/nZ x Z/nZ,
the so-called discrete Heisenberg group, acts on generators by
x; — e'x; and x; — Zit+1, where € is a primitive n-th root of
unity.



If we want to construct a Poisson bracket on CPN~1
starting from (25), then Jacobi identity for {f, g} is sufficient
but not necessary condition. !

Indeed, we need Jacobi identity

{F g} 0} + g b}, Y+ {{h f},9} =0

for homogeneous f, g, h only. But any homogeneous function
satisfies the Euler identity
of of
— 4 .. — =0. 27
xlal‘l + +xNafL‘N ( )
Therefore, (25) descends to a Poisson structure on CPY 1 if

Jacobi identity {{f,g},h}+ {{g.h}, £} + {{h, f}.g} = 0 is
satisfied modulo (27) and similar identities for g, h.

This observation turns to be crucial for generalization of
elliptic Poisson brackets to the non-abelian case.



On non-Abelian brackets

Following M. Kontsevich, we consider a free associative
algebra
A= C[l’l, ...,1’]\[]

as a “noncommutative affine space". The commutant
T =A/[A, A]

is “the space of functions on the noncommutative affine space".
Brackets should be defined on T and satisfy the identites

{fvg} = _{gaf}v {{fvg}ah} + {{g7h}7f} + {{haf}ag} =0,
where f,g,h € T = A/[A, A].

Remark. There is no any Leibniz rule, since T is a vector
space, not an algebra.



By definition, a non-abelian polynomial Poisson structure
on an affine space has the form

{f,g}:tr< Z 1,,5 sz,Js ) (28)

1<i,j<N,

1<s<K
for some K. Here P ;,, Q; js are ﬁxed elements of the free
algebra A; f,ge T = A/[A,A]; : A — T is a natural
map and 86 T — A are the non- abehan partial derivatives
(they are not vector fields!).

The formula (28) should define a Lie algebra structure on

T.



Before we wrote non-abelian Poisson brackets in the form
(12):
of 9y
Lgb=tr( L0u,(5)). 29
(ror=n( ¥ Freu(52 (29)
1<i,j<n
where
@7/7] = Z 'Pi7j7s ® Qiajvs € A ® Aop‘
1<s<N
We assume that A ® A acts on A in the standard way:
a® b(c) = ach.
If (29) is non-abelian Poisson structure, then ©; ; is an
analog of the Poisson tensor for its abelianization.



We assume that projective objects should be invariant with
respect to the change of variables

T > ax;, i=1,...,N, (30)

where a is an auxiliary noncommutative variable. We consider
the following non-abelian generalization of the brackets (25):

{fig}= tr( Z &y of x @) (31)

W o Oy
1<i,j,a,b<N ! J

It turns out that the bracket (31) is invariant with respect to
(30).

To descend the non-abelian Poisson structure (31) to
CPN~! we introduce affine coordinates

ui:x;,l:ci, 1=1,....N —1.

It is clear that uq,...,ux_1 are invariant with respect to
transformations (30).



If f, g are noncommutative polynomials in uq, ..., uny_1, then,
after the change of variables, the formula (31) can be rewritten
as

a 8 a a, 8 a
{fv g} = Z tr (Tifua f ubi - TNb]UaUzaf 29

4 du;  Ouj (9uj
1<i,j<N-1,
1<a,b<N

(32)

ab  Of g ab af 89)

=7, U —i—r UgUj = —UpUj
N a N,NYatti J
¢ ou; Ou; Ou,

where we assume that uy = 1.

It turns out (contrary to the commutative case) that not all
non-abelian Poisson structures on CPY~! can be obtained in
this way from non-abelian Poisson structures on AN,



Example. The non-abelian analog of g3 1(7) has the form

_ 1L, 90f . 99
{f.g}= Z tr (2taxi+1$z+1axi+2$z+2+

1€Z/3L

R

2 Orip1  COripe T Qw0

Lop oy odof oy
2 8xi+2 Z—Haxi-i-l 1+2 2 8$i+2 H_ani_,_l i+1
of dg $)

Oxiyo ' Ozit1

This bracket does not satisfy the Jacobi identity.



The corresponding Poisson structure on CP? is given by
0 0
U=t (3 greuls))
1<ij<e 7 J

where

O1,1 = —uju2 @ Uz + Uz X U U2, O22 = Ugu1 QU — U @UU7.

t t
@1,2Zu%®u1+u2®u%+1uQ®u1+Zu1®u2+1,

t

t
92,1=—U1®u%—u§®u2—1u2®m—1U1®U2—1.

This bracket satisfies the Jacobi identity.



Non-abelian Poisson structures on CPY-1

Let us generalize the usual definition to the
noncommutative case. We embed our free associative algebra
A = C|xy, ..., zN] into the algebra of non-abelian Laurent
polynomials A = Clx1, ...,z N, ml_l ' a,a™'], where a is an
additional auxiliary generator.

Let 7 = A/[A, A]. We define a homomorphism

f s f f € A of the algebra A to itself by
z; —azr;, t=1...,N and a > a.

sy Ty

Definition. An element f € A is called homogeneous if
f*= f. In this case an element tr(f) € T is also called
homogeneous.



We consider z1,...,xny € A as homogeneous coordinates on
a noncommutative prOJeCtIVG space cpN-1 . Homogeneous
elements in F' are considered as functions on CPV-1,

Proposition. Let f € 7 be a homogeneous element. Then
the following identities hold:

of of of of

9 O =0 (33
x18x1+ T 8$N =0, 8$1 1 +8 N:CN 0. 33)

Define a homogeneous non-abelian bivector field

0 0
y(f,g):tr( Z Cij,rai%r(%gjﬂfjw), (34)

i,j,r€Z/NZ
where o (0)
0 H—r (k—1) .
Cip = , r#£0, i, (35)
A 0 .(0
co0 = 0, Ci0 = 01(0) Ciyi (0)

0:(0)’ T Gri(0)



Remark. The non-abelian bivector field defined by (34)
does not give an affine non-abelian Poisson structure. However,
its abelianization satisfies the Jacobi identity and coincides with
the Poisson algebra gy (7).

Remark. In the case k = N — 1 the non-abelian bivector
field (34) is nonzero.

The following statement is the main result:
Theorem. For any coprime N and k the formula (34)

defines a non-abelian Poisson structure of the form (32) on

CPN-1,



Theta functions of one variable
Define a holomorphic function 6(z) by
. a(a—1)
) = Yo (el =)
Q€
It is clear that

0(z+1) =0(2), O(z+7) = —e 2™%0(2), O(—2) = —e *™20(2).
Define the so called theta functions with characteristics by

Oa(2) = 9(z+ %7)9(z+ % + %T)...G(z—i— % + %T)X

. a(a—N)
eTrz((QafN)zf%+T7)

One can check that 6,4 n(z) = 04(2) so we can consider «a as an
element in Z/NZ.
One can also check that
Bz +1) = (“1)¥00(2), Bulz+7) = —e 2N GG, (2)

and

Oo(—2) = —e~ N 0_4(2)- (36)



The following identities can be proved in a standard way.
Lemma. Let N = 3. Then

00(2)> + 01(2)% 4 02(2)> + 3t 0p(2)0: (2)02(2) = 0,

where ¢ is a certain function in 7.

Lemma. Let N > 3. Then
0;15(0)0;1(0)011i(2)01—i(2) + Ok 44(0)0k—; (0) 0115 (2)0—;(2)+

0i+(0)0i—;(0)0111(2)61-(2) = 0
for arbitrary i, 7, k,l € Z/NZ. In particular, for z = 0 we have

0+1(0)0;-1(0)01+:(0)0;—i(0) + O113(0)0—i(0)611;(0)8,—;(0)+

0i+5(0)0i—;(0)01+£(0)0;—1(0) = 0.



