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Introduction
Let xα, α = 1, . . . , N, be m×m matrices. How to define a

Poisson brackets on the vector space of functions of the form
trP (x1, ..., xN ), where P ia s (non-commutative) polynomial
with coefficients over C?

A naive version

Consider Nm2-dimensional Poisson brackets defined on
functions of entries xji,α of matrices xα.

Definition. A Poisson bracket defined on the matrix
entries is called a trace bracket if

the bracket is GLm-invariant,
for any two matrix polynomials Pi(x1, ..., xN ), i = 1, 2
with coefficients from C the bracket between their traces is
equal to the trace of some matrix polynomial P3 .



Remark. For any Hamiltonian of the form H = trP, where
P is a matrix polynomial, and for any Poisson trace bracket,
equations of motion can be written in the matrix form

dxα
dt

= Fα(x), x = (x1, ..., xN ). (1)

Theorem. i). Ȧny constant trace Poisson bracket has the
form

{xji,α, x
j′

i′,β} = δji′δ
j′

i cαβ; (2)

ii). Any linear trace bracket is written as

{xji,α, x
j′

i′,β} = bγα,βx
j′

i,γδ
j
i′ − b

γ
β,αx

j
i′,γδ

j′

i ; (3)

iii). Any quadratic trace bracket is given by the formula

{xji,α, x
j′

i′,β} = rγεαβx
j′

i,γx
j
i′,ε + aγεαβx

k
i,γx

j′

k,εδ
j
i′ − a

γε
βαx

k
i′,γx

j
k,εδ

j′

i . (4)



Furthermore,
1). The bracket (2) is a Poisson bracket iff

cαβ = −cβα.

2). The formula (3) defines a Poisson bracket, iff

bµαβb
σ
µγ = bσαµb

µ
βγ . (5)

3) The formula (4) defines a Poisson bracket iff the relations

rσεαβ = −rεσβα, (6)

rλσαβr
µν
στ + rµσβτ r

νλ
σα + rνσταr

λµ
σβ = 0, (7)

aσλαβa
µν
τσ = aµσταa

νλ
σβ, (8)

aσλαβa
µν
στ = aµσαβr

λν
τσ + aµνασr

σλ
βτ . (9)

and
aλσαβa

µν
τσ = aσναβr

λµ
στ + aµνσβr

σλ
τα (10)

hold.



Remark. The formula (5) means that bσαβ are structural
constants of an associative algebra A. A direct verification
shows that the bracket (3) is nothing but the Lie – Kirillov
–Konstant bracket defined by the Lie algebra corresponding to
the associative algebra Matm⊗A.

Remark. The relations (6) and (7) mean that the tensor r
satisfies the associative Yang–Baxter equation (or the
Rota–Baxter equation ).

An important subclass of the Poisson brackets (4)
corresponds to the case of zero tensor a.

Definition. An associative algebra A with multiplication ◦
is called anti-Frobenius algebra if it possesses a non-degenerate
antisymmetric bilinear form ( , ) that satisfies the condition

(x, y ◦ z) + (y, z ◦ x) + (z, x ◦ y) = 0 (11)

for any x, y, z ∈ A. In other words, the form ( , ) defines a
1-cocycle on A.



Theorem. There is a one-to-one correspondence between
solutions of the system (6), (7) up to equivalence and exact
representations of anti-Frobenius algebras up to isomorphism.

Construction to one side. Suppose we have an exact
m-dimensional representation of an anti-Frobenius algebra A.
Let matrices yγ with entries yij,γ form a basis in A . Denote the
matrix of the bilinear form on A by G. Let gαβ be entries of
G−1. It can be verified that the tensor

rijkl =

p∑
α,β=1

gαβyik,αy
j
l,β, i, j, k, l = 1, . . . ,m,

satisfies the relations (6), (7).

Open problem. Describe all anti-Frobenius algebras A of
the form

A = S ⊕M,

where S is a semisimple associative algebra, andM is an
S–bimodule such thatM2 = {0}.



Non-abelian Poisson brackets on
free associative algebras

The Poisson brackets, which we considered above, were
defined on functions of the entries of the matrices
xα, α = 1, . . . , N and allowed a restriction on the vector space
of traces of matrix polynomials.

Question. How to generalize these Poisson brackets to the
case of free associative algebra?

A Poisson structure on a commutative associative algebra
A is given by a Lie bracket

{·, ·} : A×A 7→ A,

satisfying the the Leibniz rule

{a, b c} = {a, b} c+ b {a, c}, a, b, c ∈ A.



A naive generalization of this definition to the case of a
non-commutative associative algebra A is not informative due to
the lack of examples of such brackets, other than the usual
commutator.

We consider the version of the Hamiltonian formalism on
the free associative algebra A, proposed by M. Kontsevich. Our
non-abelian Poisson brackets are defined only between
traces of elements from A.

The traces are regarded as elements of the quotient space
T = A/[A, A].

Let A be the free associative algebra C[x1, . . . , xN ] with the
product ◦. For any element a ∈ A we denote by La (respectively
Ra) the operator of left (respectively, right) multiplication by a:

La(X) = a ◦X, Ra(X) = X ◦ a, X ∈ A.

Definition. Denote by X the associative algebra generated
by all operators of left and right multiplications by the genera-
tors xi. This algebra is called the algebra of local operators.



Definition. A non-abelian Poisson bracket is a bracket of
the form

{f, g} = 〈gradx f, Θ(gradx g)〉, f, g ∈ T , (12)

where Θ ∈ X ⊗ glN , that satisfies the conditions

{f, g}+ {g, f} ∼ 0, (13)

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} ∼ 0. (14)

Here ∼ 0 means equality to zero in T .
Let H(x) ∈ A, where x = (x1, . . . , xN ). Then

gradx(H) ∈ AN is a vector

gradx (H) =
(

gradx1(H), . . . , gradxN (H)
)
,

the components of which are uniquely defined by the formula

d

dε
H(x1, . . . , xk + ε δk, . . . , xN )|ε=0 ∼ δk gradxk

(
H(x)

)
,

where δi are additional non-abelian variables.



Example. Let A = [́u, v]. Let us find the gradient of the
polynomial H = u2v2 − uvuu. We have

d

dε
H(u+ ε δ1, v)|ε=0 =

δ1uv
2 + uδ1v

2 − δ1vuv − uvδ1v ∼ δ1 (uv2 + v2u− 2vuv).

Therefore, gradu(H) = uv2 + v2u− 2vuv = [v, [v, u]]. Similarly,
gradv(H) = vu2 + u2v − 2uvu = [u, [u, v]] and

gradx (H) =
(

[v, [v, u]], [u, [u, v]]
)
,

where x = (u, v).

Lemma. If f ∈ [A, A], then gradx(f) = 0.

From this lemma it follows that the mapping
gradx : T → AN is well defined and the formula (12) defines a
bracket on the vector space T .



For any element f ∈ A, or its equivalence class in T , we
denote by fi the components of its gradient. Sometimes fi is
denoted by ∂f

∂xi
, and ∂

∂xi
is called “non-abelian partial derivative”.

Proposition. For any element f ∈ A the identity

N∑
i=1

[fi, xi] = 0 (15)

is fulfilled.

Any non-abelian Hamiltonian derivation (or vector field) on
A has the form

dx

d t
= Θ

(
gradxH

)
, (16)

where H(x) ∈ A/[A, A] is the Hamiltonian, and Θ is the
“Hamiltonian operator” or the “Poisson tensor”. According to the
definition, Θ is an N ×N matrix with entries being local
operators.



Question. Suppose we have two Hamiltonian derivations
Dt and Dτ defined by

dx

d t
= Θ

(
gradxH1

)
, (17)

and
dx

d τ
= Θ

(
gradxH2

)
(18)

Is it true that the commutator [Dt, Dτ ] of these derivations is
the Hamiltonian derivation corresponding to {H1, H2} ?



Linear non-abelian Poisson brackets are given by
Hamiltonian operators with the entries of the form

Θij = bkij Rxk + b̄kij Lxk , (19)

where
b̄kij = −bkji. (20)

For quadratic non-abelian Poisson brackets, we have

Θi,j = apqij LxpLxq + āpqij RxpRxq + rpqij LxpRxq , (21)

where
āpqij = −aqpji , rpqij = −rqpji . (22)

If these constants satisfy conditions (5)–(10) then the
corresponding non-abelian brackets satisfy (13), (14).



Any non-abelian Poisson brackets can be extended to the
entries of the matrices x1, · · · , xN as follows. We have

xji,α = tr(eijxα), xj
′

i′,β = tr(ei
′
j′xβ),

where eij denotes the matrix units. Set

{xji,α, x
j′

i′,β} = tr(eij Θα,β(ei
′
j′)). (23)

In the linear case (19), (20) we find that

{xji,α, x
j′

i′,β} = bγα,βx
j′

i,γδ
j
i′ − b

γ
β,αx

j
i′,γδ

j′

i ,

that is, the extended Poisson bracket coincides with (3).

In the same way, any non-abelian Poisson brackets can be
extended to matrix entries using the formula (23). However, the
corresponding trace brackets not always satisfy the Jacobi
identity !



Non-abelian Poisson brackets on
the projective space

An usual (scalar) Poisson structure on an affine space AN
over C has the form

{f, g} =
∑

1≤i,j≤N
Pi,j

∂f

∂xi

∂g

∂xj
, (24)

where x1, ..., xN are coordinates on An and Pi,j ∈ C[x1, ..., xN ]
are fixed polynomials. The formula (24) should define a Lie
algebra structure on the space of polynomials in x1, ..., xN .

Which of these Poisson structures can be descended to
CPN−1? In fact, CPN−1 = AN/C∗, where the group C∗ acts on
An by dilatations xi 7→ axi. The bracket (24) should be
invariant with respect to this action which means that Pi,j have
to be homogeneous quadratic polynomials and the formula (24)
takes the form

{f, g} =
∑

1≤i,j,a,b≤N
ra,bi,j xaxb

∂f

∂xi

∂g

∂xj
. (25)



To descend this Poisson structure to CPN−1 we introduce
affine coordinates ui = xi

xN
, i = 1...N − 1. If f, g are functions in

u1, ..., uN−1, then, after the change of variables, the formula (25)
can be rewritten as

{f, g} =
∑

1≤i,j≤N−1,
1≤a,b≤N

(ra,bi,j uaub + ra,bj,Nuaubui + ra,bi,Nuaubuj)
∂f

∂ui

∂g

∂uj
,

where uN = 1.

Example. The simplest example of elliptic homogeneous
Poisson brackets is given by

{x1, x2} = t x1x2 + x23, {x2, x3} = t x2x3 + x21,

{x3, x1} = t x1x3 + x22,

where t ∈ C is a parameter. In the affine coordinates
u1 = x1

x3
, u2 = x2

x3
this Poisson structure has the form

{u1, u2} = u31 + u32 + 3t u1u2 + 1.



The first example of an elliptic Poisson bracket with 4
generators was constructed by E. Sklyanin.

A. Odesskii and B. Feygin constructed a wide class of
elliptic brackets of the form (25) named qn,k(τ). Here n, k ∈ Z,
1 ≤ k < n and n, k are coprime.

The bracket qn,k(τ) admits a discrete group of
automorphisms acting on generators x1, . . . , xn by xi 7→ εixi
and xi 7→ xi+1, where ε is a primitive n-th root of unity.

The Poisson brackets qn,n−1(τ) are trivial.

An explicit formula for the coefficients of qn,k(τ) can be
written in terms of theta constants.



Explicitly, the Poisson brackets in qn,k(τ) are the following:

{xi, xj} =

(
θ′j−i(0)

θj−i(0)
+
θ′k(j−i)(0)

θk(j−i)(0)

)
xixj+

∑
r 6=0,j−i

θ′0(0)θj−i+r(k−1)(0)

θkr(0)θj−i−r(0)
xj−rxi+r.

(26)
Notice that the algebra Qn,k(η, τ) and the corresponding
Poisson algebra qn,k(τ) both admit the same discrete group of
automorphisms. Namely, a central extension of Z/nZ× Z/nZ,
the so-called discrete Heisenberg group, acts on generators by
xi 7→ εixi and xi 7→ xi+1, where ε is a primitive n-th root of
unity.



If we want to construct a Poisson bracket on CPN−1
starting from (25), then Jacobi identity for {f, g} is sufficient
but not necessary condition. !

Indeed, we need Jacobi identity

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

for homogeneous f, g, h only. But any homogeneous function
satisfies the Euler identity

x1
∂f

∂x1
+ ...+ xN

∂f

∂xN
= 0. (27)

Therefore, (25) descends to a Poisson structure on CPN−1 if
Jacobi identity {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 is
satisfied modulo (27) and similar identities for g, h.

This observation turns to be crucial for generalization of
elliptic Poisson brackets to the non-abelian case.



On non-Abelian brackets
Following M. Kontsevich, we consider a free associative

algebra
A = C[x1, ..., xN ]

as a “noncommutative affine space". The commutant

T = A/[A,A]

is “the space of functions on the noncommutative affine space".
Brackets should be defined on T and satisfy the identites

{f, g} = −{g, f}, {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0,

where f, g, h ∈ T = A/[A,A].

Remark. There is no any Leibniz rule, since T is a vector
space, not an algebra.



By definition, a non-abelian polynomial Poisson structure
on an affine space has the form

{f, g} = tr
( ∑

1≤i,j≤N,
1≤s≤K

Pi,j,s
∂f

∂xi
Qi,j,s

∂g

∂xj

)
(28)

for some K. Here Pi,j,s, Qi,j,s are fixed elements of the free
algebra A; f, g ∈ T = A/[A,A]; tr : A→ T is a natural
map and ∂

∂xi
: T → A are the non-abelian partial derivatives

(they are not vector fields!).

The formula (28) should define a Lie algebra structure on
T .



Before we wrote non-abelian Poisson brackets in the form
(12):

{f, g} = tr
( ∑

1≤i,j≤n

∂f

∂xi
Θi,j

( ∂g
∂xj

))
, (29)

where
Θi,j =

∑
1≤s≤N

Pi,j,s ⊗Qi,j,s ∈ A⊗Aop.

We assume that A⊗Aop acts on A in the standard way:
a⊗ b(c) = acb.

If (29) is non-abelian Poisson structure, then Θi,j is an
analog of the Poisson tensor for its abelianization.



We assume that projective objects should be invariant with
respect to the change of variables

xi 7→ axi, i = 1, ..., N, (30)

where a is an auxiliary noncommutative variable. We consider
the following non-abelian generalization of the brackets (25):

{f, g} = tr
( ∑

1≤i,j,a,b≤N
ra,bi,j xa

∂f

∂xi
xb
∂g

∂xj

)
. (31)

It turns out that the bracket (31) is invariant with respect to
(30).

To descend the non-abelian Poisson structure (31) to
CPN−1, we introduce affine coordinates

ui = x−1N xi, i = 1, ..., N − 1.

It is clear that u1, ..., uN−1 are invariant with respect to
transformations (30).



If f, g are noncommutative polynomials in u1, ..., uN−1, then,
after the change of variables, the formula (31) can be rewritten
as

{f, g} =
∑

1≤i,j≤N−1,
1≤a,b≤N

tr
(
ra,bi,j ua

∂f

∂ui
ub
∂g

∂uj
− ra,bN,juaui

∂f

∂ui
ub
∂g

∂uj

(32)

−ra,bi,Nua
∂f

∂ui
ubuj

∂g

∂uj
+ ra,bN,Nuaui

∂f

∂ui
ubuj

∂g

∂uj

)
,

where we assume that uN = 1.

It turns out (contrary to the commutative case) that not all
non-abelian Poisson structures on CPN−1 can be obtained in
this way from non-abelian Poisson structures on AN .



Example. The non-abelian analog of q3,1(τ) has the form

{f, g} =
∑

i∈Z/3Z

tr
(1

2
t
∂f

∂xi+1
xi+1

∂g

∂xi+2
xi+2+

1

2
t
∂f

∂xi+1
xi+2

∂g

∂xi+2
xi+1 +

∂f

∂xi+1
xi

∂g

∂xi+2
xi−

1

2
t
∂f

∂xi+2
xi+1

∂g

∂xi+1
xi+2 −

1

2
t
∂f

∂xi+2
xi+2

∂g

∂xi+1
xi+1−

∂f

∂xi+2
xi

∂g

∂xi+1
xi

)
.

This bracket does not satisfy the Jacobi identity.



The corresponding Poisson structure on CP 2 is given by

{f, g} = tr
( ∑

1≤i,j≤2

∂f

∂ui
Θi,j

( ∂g
∂uj

))
,

where

Θ1,1 = −u1u2⊗u2 +u2⊗u1u2, Θ2,2 = u2u1⊗u1−u1⊗u2u1.

Θ1,2 = u21 ⊗ u1 + u2 ⊗ u22 +
t

4
u2 ⊗ u1 +

t

4
u1 ⊗ u2 + 1,

Θ2,1 = −u1 ⊗ u21 − u22 ⊗ u2 −
t

4
u2 ⊗ u1 −

t

4
u1 ⊗ u2 − 1.

This bracket satisfies the Jacobi identity.



Non-abelian Poisson structures on CPN−1

Let us generalize the usual definition to the
noncommutative case. We embed our free associative algebra
A = C[x1, ..., xN ] into the algebra of non-abelian Laurent
polynomials Â = C[x1, ..., xN , x

−1
1 , ..., x−1N , a, a−1], where a is an

additional auxiliary generator.

Let T̂ = Â/[Â, Â]. We define a homomorphism
f 7→ fa, f ∈ Â of the algebra Â to itself by
xi 7→ axi, i = 1..., N and a 7→ a.

Definition. An element f ∈ Â is called homogeneous if
fa = f . In this case an element tr(f) ∈ T̂ is also called
homogeneous.



We consider x1, ..., xN ∈ A as homogeneous coordinates on
a noncommutative projective space CPN−1. Homogeneous
elements in F̂ are considered as functions on CPN−1.

Proposition. Let f ∈ T̂ be a homogeneous element. Then
the following identities hold:

x1
∂f

∂x1
+ ...+ xN

∂f

∂xN
= 0,

∂f

∂x1
x1 + ...+

∂f

∂xN
xN = 0. (33)

Define a homogeneous non-abelian bivector field

ν(f, g) = tr
( ∑
i,j,r∈Z/NZ

ci−j,r
∂f

∂xi
xi−r

∂g

∂xj
xj+r

)
, (34)

where

ci,r =
θ′0(0)θi+r(k−1)(0)

θkr(0)θi−r(0)
, r 6= 0, i, (35)

c0,0 = 0, ci,0 =
θ′i(0)

θi(0)
, ci,i =

θ′ki(0)

θki(0)
.



Remark. The non-abelian bivector field defined by (34)
does not give an affine non-abelian Poisson structure. However,
its abelianization satisfies the Jacobi identity and coincides with
the Poisson algebra qN,k(τ).

Remark. In the case k = N − 1 the non-abelian bivector
field (34) is nonzero.

The following statement is the main result:

Theorem. For any coprime N and k the formula (34)
defines a non-abelian Poisson structure of the form (32) on
CPN−1.



Theta functions of one variable
Define a holomorphic function θ(z) by

θ(z) =
∑
α∈Z

(−1)αe
2πi

(
αz+

α(α−1)
2

τ
)

It is clear that

θ(z+1) = θ(z), θ(z+τ) = −e−2πizθ(z), θ(−z) = −e−2πizθ(z).
Define the so called theta functions with characteristics by

θα(z) = θ
(
z +

α

N
τ
)
θ
(
z +

1

N
+
α

N
τ
)
...θ
(
z +

N − 1

N
+
α

N
τ
)
×

eπi((2α−N)z− α
N
+
α(α−N)

N
τ)

One can check that θα+N (z) = θα(z) so we can consider α as an
element in Z/NZ.

One can also check that

θα(z + 1) = (−1)Nθα(z), θα(z + τ) = −e−2πiN(z+ 1
2
τ)θα(z)

and
θα(−z) = −e−

2πiα
N θ−α(z). (36)



The following identities can be proved in a standard way.
Lemma. Let N = 3. Then

θ0(z)
3 + θ1(z)

3 + θ2(z)
3 + 3t θ0(z)θ1(z)θ2(z) = 0,

where t is a certain function in τ .

Lemma. Let N > 3. Then

θj+k(0)θj−k(0)θl+i(z)θl−i(z) + θk+i(0)θk−i(0)θl+j(z)θl−j(z)+

θi+j(0)θi−j(0)θl+k(z)θl−k(z) = 0

for arbitrary i, j, k, l ∈ Z/NZ. In particular, for z = 0 we have

θj+k(0)θj−k(0)θl+i(0)θl−i(0) + θk+i(0)θk−i(0)θl+j(0)θl−j(0)+

θi+j(0)θi−j(0)θl+k(0)θl−k(0) = 0.


