Non-Abelian Poisson brackets

Vladimir V. Sokolov ${ }^{1}$

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia

Yaroslavl' 18.10.2023

${ }^{1}$ Based on a joint papers with A.Odesskii and V.Roubtsov

- M. Kontsevich, Formal non-commutative symplectic geometry, in The Gelfand mathematical Seminars 1990-1992, Birkhauser, 1993, 173-187.
- A. Mikhailov, V. Sokolov, Integrable ODEs on associative algebras, Comm. Math. Phys., 2000, 211(1), 231-251.
- W. Crawley-Boevey, P. Etingof, V. Ginzburg, Noncommutative geometry and quiver algebras, Advances in Mathematics, 2007, 209, 274-336.
- M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc., 2008, 360(11), 5711-5769.
- S. Arthamonov, Noncommutative inverse scattering method and the Kontsevich system, Letters in Mathematical Physics, 2015, 105(9), 1223-1251. 105 (9),
- A. Odesskii, V. Roubtsov, V. Sokolov, Bi-Hamiltonian ODEs with matrix variables, Teoret. and Math. Phys, 2012, 171(1), 26-33.
- A. Odesskii, B. Feigin, Sklyanin's elliptic algebras, Funct. Anal. Appl., 1989, 23(3), 207-214.
- A. Odesskii, V. Sokolov, Noncommutative elliptic Poisson structures on projective spaces, Journal of Geometry and Physics, 2021, 169, 104330.

Introduction

Let $x_{\alpha}, \alpha=1, \ldots, N$, be $m \times m$ matrices. How to define a Poisson brackets on the vector space of functions of the form $\operatorname{tr} P\left(x_{1}, \ldots, x_{N}\right)$, where P ia s (non-commutative) polynomial with coefficients over \mathbb{C} ?

A naive version

Consider Nm^{2}-dimensional Poisson brackets defined on functions of entries $x_{i, \alpha}^{j}$ of matrices x_{α}.

Definition. A Poisson bracket defined on the matrix entries is called a trace bracket if

- the bracket is $G L_{m}$-invariant,
- for any two matrix polynomials $P_{i}\left(x_{1}, \ldots, x_{N}\right), \quad i=1,2$ with coefficients from \mathbb{C} the bracket between their traces is equal to the trace of some matrix polynomial P_{3}.

Remark. For any Hamiltonian of the form $H=\operatorname{tr} P$, where P is a matrix polynomial, and for any Poisson trace bracket, equations of motion can be written in the matrix form

$$
\begin{equation*}
\frac{d x_{\alpha}}{d t}=F_{\alpha}(\mathbf{x}), \quad \mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \tag{1}
\end{equation*}
$$

Theorem. i). Ány constant trace Poisson bracket has the form

$$
\begin{equation*}
\left\{x_{i, \alpha}^{j}, x_{i^{\prime}, \beta}^{j^{\prime}}\right\}=\delta_{i^{\prime}}^{j} \delta_{i}^{j^{\prime}} c_{\alpha \beta} ; \tag{2}
\end{equation*}
$$

ii). Any linear trace bracket is written as

$$
\begin{equation*}
\left\{x_{i, \alpha}^{j}, x_{i^{\prime}, \beta}^{j^{\prime}}\right\}=b_{\alpha, \beta}^{\gamma} x_{i, \gamma}^{j^{\prime}} \delta_{i^{\prime}}^{j}-b_{\beta, \alpha}^{\gamma} x_{i^{\prime}, \gamma}^{j} \delta_{i}^{j^{\prime}} ; \tag{3}
\end{equation*}
$$

iii). Any quadratic trace bracket is given by the formula

$$
\begin{equation*}
\left\{x_{i, \alpha}^{j}, x_{i^{\prime}, \beta}^{j^{\prime}}\right\}=r_{\alpha \beta}^{\gamma \epsilon} x_{i, \gamma}^{j^{\prime}} x_{i^{\prime}, \epsilon}^{j}+a_{\alpha \beta}^{\gamma \epsilon} x_{i, \gamma}^{k} x_{k, \epsilon}^{j^{\prime}} \delta_{i^{\prime}}^{j}-a_{\beta \alpha}^{\gamma \epsilon} x_{i^{\prime}, \gamma}^{k} x_{k, \epsilon}^{j} \delta_{i}^{j^{\prime}} . \tag{4}
\end{equation*}
$$

Furthermore,
1). The bracket (2) is a Poisson bracket iff

$$
c_{\alpha \beta}=-c_{\beta \alpha}
$$

2). The formula (3) defines a Poisson bracket, iff

$$
\begin{equation*}
b_{\alpha \beta}^{\mu} b_{\mu \gamma}^{\sigma}=b_{\alpha \mu}^{\sigma} b_{\beta \gamma}^{\mu} . \tag{5}
\end{equation*}
$$

3) The formula (4) defines a Poisson bracket iff the relations

$$
\begin{gather*}
r_{\alpha \beta}^{\sigma \epsilon}=-r_{\beta \alpha}^{\epsilon \sigma} \tag{6}\\
r_{\alpha \beta}^{\lambda \sigma} r_{\sigma \tau}^{\mu \nu}+r_{\beta \tau}^{\mu \sigma} r_{\sigma \alpha}^{\nu \lambda}+r_{\tau \alpha}^{\nu \sigma} r_{\sigma \beta}^{\lambda \mu}=0 \tag{7}\\
a_{\alpha \beta}^{\sigma \lambda} a_{\tau \sigma}^{\mu \nu}=a_{\tau \alpha}^{\mu \sigma} a_{\sigma \beta}^{\nu \lambda} \tag{8}\\
a_{\alpha \beta}^{\sigma \lambda} a_{\sigma \tau}^{\mu \nu}=a_{\alpha \beta}^{\mu \sigma} r_{\tau \sigma}^{\lambda \nu}+a_{\alpha \sigma}^{\mu \nu} r_{\beta \tau}^{\sigma \lambda} . \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{\alpha \beta}^{\lambda \sigma} a_{\tau \sigma}^{\mu \nu}=a_{\alpha \beta}^{\sigma \nu} r_{\sigma \tau}^{\lambda \mu}+a_{\sigma \beta}^{\mu \nu} r_{\tau \alpha}^{\sigma \lambda} \tag{10}
\end{equation*}
$$

hold.

Remark. The formula (5) means that $b_{\alpha \beta}^{\sigma}$ are structural constants of an associative algebra \mathcal{A}. A direct verification shows that the bracket (3) is nothing but the Lie - Kirillov -Konstant bracket defined by the Lie algebra corresponding to the associative algebra $\operatorname{Mat}_{m} \otimes \mathcal{A}$.

Remark. The relations (6) and (7) mean that the tensor \mathbf{r} satisfies the associative Yang-Baxter equation (or the Rota-Baxter equation).

An important subclass of the Poisson brackets (4) corresponds to the case of zero tensor a.

Definition. An associative algebra \mathcal{A} with multiplication \circ is called anti-Frobenius algebra if it possesses a non-degenerate antisymmetric bilinear form (,) that satisfies the condition

$$
\begin{equation*}
(x, y \circ z)+(y, z \circ x)+(z, x \circ y)=0 \tag{11}
\end{equation*}
$$

for any $x, y, z \in \mathcal{A}$. In other words, the form (,) defines a 1-cocycle on \mathcal{A}.

Theorem. There is a one-to-one correspondence between solutions of the system (6), (7) up to equivalence and exact representations of anti-Frobenius algebras up to isomorphism.

Construction to one side. Suppose we have an exact m-dimensional representation of an anti-Frobenius algebra \mathcal{A}. Let matrices y_{γ} with entries $y_{j, \gamma}^{i}$ form a basis in \mathcal{A}. Denote the matrix of the bilinear form on \mathcal{A} by G. Let $g^{\alpha \beta}$ be entries of G^{-1}. It can be verified that the tensor

$$
r_{k l}^{i j}=\sum_{\alpha, \beta=1}^{p} g^{\alpha \beta} y_{k, \alpha}^{i} y_{l, \beta}^{j}, \quad i, j, k, l=1, \ldots, m
$$

satisfies the relations (6), (7).
Open problem. Describe all anti-Frobenius algebras \mathcal{A} of the form

$$
\mathcal{A}=\mathcal{S} \oplus \mathcal{M}
$$

where \mathcal{S} is a semisimple associative algebra, and \mathcal{M} is an \mathcal{S}-bimodule such that $\mathcal{M}^{2}=\{0\}$.

Non-abelian Poisson brackets on free associative algebras

The Poisson brackets, which we considered above, were defined on functions of the entries of the matrices $x_{\alpha}, \alpha=1, \ldots, N$ and allowed a restriction on the vector space of traces of matrix polynomials.

Question. How to generalize these Poisson brackets to the case of free associative algebra?

A Poisson structure on a commutative associative algebra A is given by a Lie bracket

$$
\{\cdot, \cdot\}: A \times A \mapsto A
$$

satisfying the the Leibniz rule

$$
\{a, b c\}=\{a, b\} c+b\{a, c\}, \quad a, b, c \in A
$$

A naive generalization of this definition to the case of a non-commutative associative algebra A is not informative due to the lack of examples of such brackets, other than the usual commutator.

We consider the version of the Hamiltonian formalism on the free associative algebra \mathcal{A}, proposed by M. Kontsevich. Our non-abelian Poisson brackets are defined only between traces of elements from \mathcal{A}.

The traces are regarded as elements of the quotient space $\mathcal{T}=\mathcal{A} /[\mathcal{A}, \mathcal{A}]$.

Let \mathcal{A} be the free associative algebra $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ with the product \circ. For any element $a \in \mathcal{A}$ we denote by L_{a} (respectively R_{a}) the operator of left (respectively, right) multiplication by a :

$$
L_{a}(X)=a \circ X, \quad R_{a}(X)=X \circ a, \quad X \in \mathcal{A}
$$

Definition. Denote by \mathcal{X} the associative algebra generated by all operators of left and right multiplications by the generators x_{i}. This algebra is called the algebra of localoperators.

Definition. A non-abelian Poisson bracket is a bracket of the form

$$
\begin{equation*}
\{f, g\}=\left\langle\operatorname{grad}_{\mathbf{x}} f, \Theta\left(\operatorname{grad}_{\mathbf{x}} g\right)\right\rangle, \quad f, g \in \mathcal{T} \tag{12}
\end{equation*}
$$

where $\Theta \in \mathcal{X} \otimes \mathfrak{g l}_{N}$, that satisfies the conditions

$$
\begin{align*}
&\{f, g\}+\{g, f\} \sim 0 \tag{13}\\
&\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\} \sim 0 \tag{14}
\end{align*}
$$

Here ~ 0 means equality to zero in \mathcal{T}.
Let $H(\mathbf{x}) \in \mathcal{A}$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$. Then $\operatorname{grad}_{\mathbf{x}}(H) \in \mathcal{A}^{N}$ is a vector

$$
\operatorname{grad}_{\mathbf{x}}(H)=\left(\operatorname{grad}_{x_{1}}(H), \ldots, \operatorname{grad}_{x_{N}}(H)\right)
$$

the components of which are uniquely defined by the formula

$$
\left.\frac{d}{d \epsilon} H\left(x_{1}, \ldots, x_{k}+\epsilon \delta_{k}, \ldots, x_{N}\right)\right|_{\epsilon=0} \sim \delta_{k} \operatorname{grad}_{x_{k}}(H(\mathbf{x}))
$$

where δ_{i} are additional non-abelian variables.

Example. Let $\mathcal{A}=[u, v]$. Let us find the gradient of the polynomial $H=u^{2} v^{2}-u v u u$. We have

$$
\begin{gathered}
\left.\frac{d}{d \epsilon} H\left(u+\epsilon \delta_{1}, v\right)\right|_{\epsilon=0}= \\
\delta_{1} u v^{2}+u \delta_{1} v^{2}-\delta_{1} v u v-u v \delta_{1} v \sim \delta_{1}\left(u v^{2}+v^{2} u-2 v u v\right) .
\end{gathered}
$$

Therefore, $\operatorname{grad}_{u}(H)=u v^{2}+v^{2} u-2 v u v=[v,[v, u]]$. Similarly, $\operatorname{grad}_{v}(H)=v u^{2}+u^{2} v-2 u v u=[u,[u, v]]$ and

$$
\operatorname{grad}_{\mathbf{x}}(H)=([v,[v, u]], \quad[u,[u, v]])
$$

where $\mathbf{x}=(u, v)$.
Lemma. If $f \in[\mathcal{A}, \mathcal{A}]$, then $\operatorname{grad}_{\mathbf{x}}(f)=0$.
From this lemma it follows that the mapping $\operatorname{grad}_{\mathbf{x}}: \mathcal{T} \rightarrow \mathcal{A}^{N}$ is well defined and the formula (12) defines a bracket on the vector space \mathcal{T}.

For any element $f \in \mathcal{A}$, or its equivalence class in \mathcal{T}, we denote by f_{i} the components of its gradient. Sometimes f_{i} is denoted by $\frac{\partial f}{\partial x_{i}}$, and $\frac{\partial}{\partial x_{i}}$ is called "non-abelian partial derivative".

Proposition. For any element $f \in \mathcal{A}$ the identity

$$
\begin{equation*}
\sum_{i=1}^{N}\left[f_{i}, x_{i}\right]=0 \tag{15}
\end{equation*}
$$

is fulfilled.
Any non-abelian Hamiltonian derivation (or vector field) on \mathcal{A} has the form

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\Theta\left(\operatorname{grad}_{\mathbf{x}} H\right) \tag{16}
\end{equation*}
$$

where $H(\mathbf{x}) \in \mathcal{A} /[\mathcal{A}, \mathcal{A}]$ is the Hamiltonian, and Θ is the "Hamiltonian operator" or the "Poisson tensor". According to the definition, Θ is an $N \times N$ matrix with entries being local operators.

Question. Suppose we have two Hamiltonian derivations D_{t} and D_{τ} defined by

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\Theta\left(\operatorname{grad}_{\mathbf{x}} H_{1}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \mathbf{x}}{d \tau}=\Theta\left(\operatorname{grad}_{\mathbf{x}} H_{2}\right) \tag{18}
\end{equation*}
$$

Is it true that the commutator $\left[D_{t}, D_{\tau}\right]$ of these derivations is the Hamiltonian derivation corresponding to $\left\{H_{1}, H_{2}\right\}$?

Linear non-abelian Poisson brackets are given by Hamiltonian operators with the entries of the form

$$
\begin{equation*}
\Theta_{i j}=b_{i j}^{k} R_{x_{k}}+\bar{b}_{i j}^{k} L_{x_{k}}, \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{b}_{i j}^{k}=-b_{j i}^{k} . \tag{20}
\end{equation*}
$$

For quadratic non-abelian Poisson brackets, we have

$$
\begin{equation*}
\Theta_{i, j}=a_{i j}^{p q} L_{x_{p}} L_{x_{q}}+\bar{a}_{i j}^{p q} R_{x_{p}} R_{x_{q}}+r_{i j}^{p q} L_{x_{p}} R_{x_{q}}, \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{a}_{i j}^{p q}=-a_{j i}^{q p}, \quad r_{i j}^{p q}=-r_{j i}^{q p} \tag{22}
\end{equation*}
$$

If these constants satisfy conditions (5)-(10) then the corresponding non-abelian brackets satisfy (13), (14).

Any non-abelian Poisson brackets can be extended to the entries of the matrices x_{1}, \cdots, x_{N} as follows. We have

$$
x_{i, \alpha}^{j}=\operatorname{tr}\left(e_{j}^{i} x_{\alpha}\right), \quad x_{i^{\prime}, \beta}^{j^{\prime}}=\operatorname{tr}\left(e_{j^{\prime}}^{i^{\prime}} x_{\beta}\right),
$$

where e_{j}^{i} denotes the matrix units. Set

$$
\begin{equation*}
\left\{x_{i, \alpha}^{j}, x_{i^{\prime}, \beta}^{j^{\prime}}\right\}=\operatorname{tr}\left(e_{j}^{i} \Theta_{\alpha, \beta}\left(e_{j^{\prime}}^{i^{\prime}}\right)\right) \tag{23}
\end{equation*}
$$

In the linear case (19), (20) we find that

$$
\left\{x_{i, \alpha}^{j}, x_{i^{\prime}, \beta}^{j^{\prime}}\right\}=b_{\alpha, \beta}^{\gamma} x_{i, \gamma}^{j^{\prime}} \delta_{i^{\prime}}^{j}-b_{\beta, \alpha}^{\gamma} x_{i^{\prime}, \gamma}^{j} \delta_{i}^{j^{\prime}},
$$

that is, the extended Poisson bracket coincides with (3).
In the same way, any non-abelian Poisson brackets can be extended to matrix entries using the formula (23). However, the corresponding trace brackets not always satisfy the Jacobi identity !

Non-abelian Poisson brackets on the projective space

An usual (scalar) Poisson structure on an affine space \mathbb{A}^{N} over \mathbb{C} has the form

$$
\begin{equation*}
\{f, g\}=\sum_{1 \leq i, j \leq N} P_{i, j} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}, \tag{24}
\end{equation*}
$$

where x_{1}, \ldots, x_{N} are coordinates on \mathbb{A}^{n} and $P_{i, j} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ are fixed polynomials. The formula (24) should define a Lie algebra structure on the space of polynomials in x_{1}, \ldots, x_{N}.

Which of these Poisson structures can be descended to $\mathbb{C} P^{N-1}$? In fact, $\mathbb{C} P^{N-1}=\mathbb{A}^{N} / \mathbb{C}^{*}$, where the group \mathbb{C}^{*} acts on \mathbb{A}^{n} by dilatations $x_{i} \mapsto a x_{i}$. The bracket (24) should be invariant with respect to this action which means that $P_{i, j}$ have to be homogeneous quadratic polynomials and the formula (24) takes the form

$$
\begin{equation*}
\{f, g\}=\sum_{1 \leq i, j, a, b \leq N} r_{i, j}^{a, b} x_{a} x_{b} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}} \tag{25}
\end{equation*}
$$

To descend this Poisson structure to $\mathbb{C} P^{N-1}$ we introduce affine coordinates $u_{i}=\frac{x_{i}}{x_{N}}, i=1 \ldots N-1$. If f, g are functions in u_{1}, \ldots, u_{N-1}, then, after the change of variables, the formula (25) can be rewritten as

$$
\{f, g\}=\sum_{\substack{1 \leq i, j \leq N-1, 1 \leq a, b \leq N}}\left(r_{i, j}^{a, b} u_{a} u_{b}+r_{j, N}^{a, b} u_{a} u_{b} u_{i}+r_{i, N}^{a, b} u_{a} u_{b} u_{j}\right) \frac{\partial f}{\partial u_{i}} \frac{\partial g}{\partial u_{j}},
$$

where $u_{N}=1$.
Example. The simplest example of elliptic homogeneous Poisson brackets is given by

$$
\begin{gathered}
\left\{x_{1}, x_{2}\right\}=t x_{1} x_{2}+x_{3}^{2}, \quad\left\{x_{2}, x_{3}\right\}=t x_{2} x_{3}+x_{1}^{2} \\
\left\{x_{3}, x_{1}\right\}=t x_{1} x_{3}+x_{2}^{2}
\end{gathered}
$$

where $t \in \mathbb{C}$ is a parameter. In the affine coordinates $u_{1}=\frac{x_{1}}{x_{3}}, u_{2}=\frac{x_{2}}{x_{3}}$ this Poisson structure has the form

$$
\left\{u_{1}, u_{2}\right\}=u_{1}^{3}+u_{2}^{3}+3 t u_{1} u_{2}+1
$$

The first example of an elliptic Poisson bracket with 4 generators was constructed by E. Sklyanin.
A. Odesskii and B. Feygin constructed a wide class of elliptic brackets of the form (25) named $q_{n, k}(\tau)$. Here $n, k \in \mathbb{Z}$, $1 \leq k<n$ and n, k are coprime.

The bracket $q_{n, k}(\tau)$ admits a discrete group of automorphisms acting on generators x_{1}, \ldots, x_{n} by $x_{i} \mapsto \varepsilon^{i} x_{i}$ and $x_{i} \mapsto x_{i+1}$, where ε is a primitive n-th root of unity.

The Poisson brackets $q_{n, n-1}(\tau)$ are trivial.
An explicit formula for the coefficients of $q_{n, k}(\tau)$ can be written in terms of theta constants.

Explicitly, the Poisson brackets in $q_{n, k}(\tau)$ are the following:
$\left\{x_{i}, x_{j}\right\}=\left(\frac{\theta_{j-i}^{\prime}(0)}{\theta_{j-i}(0)}+\frac{\theta_{k(j-i)}^{\prime}(0)}{\theta_{k(j-i)}(0)}\right) x_{i} x_{j}+\sum_{r \neq 0, j-i} \frac{\theta_{0}^{\prime}(0) \theta_{j-i+r(k-1)}(0)}{\theta_{k r}(0) \theta_{j-i-r}(0)} x_{j-r}$.
Notice that the algebra $Q_{n, k}(\eta, \tau)$ and the corresponding Poisson algebra $q_{n, k}(\tau)$ both admit the same discrete group of automorphisms. Namely, a central extension of $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$, the so-called discrete Heisenberg group, acts on generators by $x_{i} \mapsto \varepsilon^{i} x_{i}$ and $x_{i} \mapsto x_{i+1}$, where ε is a primitive n-th root of unity.

If we want to construct a Poisson bracket on $\mathbb{C} P^{N-1}$ starting from (25), then Jacobi identity for $\{f, g\}$ is sufficient but not necessary condition. !

Indeed, we need Jacobi identity

$$
\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0
$$

for homogeneous f, g, h only. But any homogeneous function satisfies the Euler identity

$$
\begin{equation*}
x_{1} \frac{\partial f}{\partial x_{1}}+\ldots+x_{N} \frac{\partial f}{\partial x_{N}}=0 \tag{27}
\end{equation*}
$$

Therefore, (25) descends to a Poisson structure on $\mathbb{C} P^{N-1}$ if Jacobi identity $\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0$ is satisfied modulo (27) and similar identities for g, h.

This observation turns to be crucial for generalization of elliptic Poisson brackets to the non-abelian case.

On non-Abelian brackets

Following M. Kontsevich, we consider a free associative algebra

$$
A=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]
$$

as a "noncommutative affine space". The commutant

$$
\mathcal{T}=A /[A, A]
$$

is "the space of functions on the noncommutative affine space". Brackets should be defined on \mathcal{T} and satisfy the identites
$\{f, g\}=-\{g, f\}, \quad\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0$, where $f, g, h \in \mathcal{T}=A /[A, A]$.

Remark. There is no any Leibniz rule, since \mathcal{T} is a vector space, not an algebra.

By definition, a non-abelian polynomial Poisson structure on an affine space has the form

$$
\begin{equation*}
\{f, g\}=\operatorname{tr}\left(\sum_{\substack{1 \leq i, j \leq N, 1 \leq s \leq K}} P_{i, j, s} \frac{\partial f}{\partial x_{i}} Q_{i, j, s} \frac{\partial g}{\partial x_{j}}\right) \tag{28}
\end{equation*}
$$

for some K. Here $P_{i, j, s}, Q_{i, j, s}$ are fixed elements of the free algebra $A ; \quad f, g \in \mathcal{T}=A /[A, A] ; \quad \operatorname{tr}: A \rightarrow \mathcal{T}$ is a natural map and $\frac{\partial}{\partial x_{i}}: \mathcal{T} \rightarrow A$ are the non-abelian partial derivatives (they are not vector fields!).

The formula (28) should define a Lie algebra structure on \mathcal{T}.

Before we wrote non-abelian Poisson brackets in the form (12):

$$
\begin{equation*}
\{f, g\}=\operatorname{tr}\left(\sum_{1 \leq i, j \leq n} \frac{\partial f}{\partial x_{i}} \Theta_{i, j}\left(\frac{\partial g}{\partial x_{j}}\right)\right) \tag{29}
\end{equation*}
$$

where

$$
\Theta_{i, j}=\sum_{1 \leq s \leq N} P_{i, j, s} \otimes Q_{i, j, s} \in \mathcal{A} \otimes \mathcal{A}^{o p}
$$

We assume that $\mathcal{A} \otimes \mathcal{A}^{o p}$ acts on \mathcal{A} in the standard way: $a \otimes b(c)=a c b$.

If (29) is non-abelian Poisson structure, then $\Theta_{i, j}$ is an analog of the Poisson tensor for its abelianization.

We assume that projective objects should be invariant with respect to the change of variables

$$
\begin{equation*}
x_{i} \mapsto a x_{i}, \quad i=1, \ldots, N, \tag{30}
\end{equation*}
$$

where a is an auxiliary noncommutative variable. We consider the following non-abelian generalization of the brackets (25):

$$
\begin{equation*}
\{f, g\}=\operatorname{tr}\left(\sum_{1 \leq i, j, a, b \leq N} r_{i, j}^{a, b} x_{a} \frac{\partial f}{\partial x_{i}} x_{b} \frac{\partial g}{\partial x_{j}}\right) \tag{31}
\end{equation*}
$$

It turns out that the bracket (31) is invariant with respect to (30).

To descend the non-abelian Poisson structure (31) to $\mathbb{C} P^{N-1}$, we introduce affine coordinates

$$
u_{i}=x_{N}^{-1} x_{i}, \quad i=1, \ldots, N-1 .
$$

It is clear that u_{1}, \ldots, u_{N-1} are invariant with respect to transformations (30).

If f, g are noncommutative polynomials in u_{1}, \ldots, u_{N-1}, then, after the change of variables, the formula (31) can be rewritten as

$$
\begin{align*}
\{f, g\} & =\sum_{\substack{1 \leq i, j \leq N-1, 1 \leq a, b \leq N}} \operatorname{tr}\left(r_{i, j}^{a, b} u_{a} \frac{\partial f}{\partial u_{i}} u_{b} \frac{\partial g}{\partial u_{j}}-r_{N, j}^{a, b} u_{a} u_{i} \frac{\partial f}{\partial u_{i}} u_{b} \frac{\partial g}{\partial u_{j}}\right. \\
& \left.-r_{i, N}^{a, b} u_{a} \frac{\partial f}{\partial u_{i}} u_{b} u_{j} \frac{\partial g}{\partial u_{j}}+r_{N, N}^{a, b} u_{a} u_{i} \frac{\partial f}{\partial u_{i}} u_{b} u_{j} \frac{\partial g}{\partial u_{j}}\right), \tag{32}
\end{align*}
$$

where we assume that $u_{N}=1$.
It turns out (contrary to the commutative case) that not all non-abelian Poisson structures on $\mathbb{C} P^{N-1}$ can be obtained in this way from non-abelian Poisson structures on \mathbb{A}^{N}.

Example. The non-abelian analog of $q_{3,1}(\tau)$ has the form

$$
\begin{aligned}
\{f, g\}= & \sum_{i \in \mathbb{Z} / 3 \mathbb{Z}} \operatorname{tr}\left(\frac{1}{2} t \frac{\partial f}{\partial x_{i+1}} x_{i+1} \frac{\partial g}{\partial x_{i+2}} x_{i+2}+\right. \\
& \frac{1}{2} t \frac{\partial f}{\partial x_{i+1}} x_{i+2} \frac{\partial g}{\partial x_{i+2}} x_{i+1}+\frac{\partial f}{\partial x_{i+1}} x_{i} \frac{\partial g}{\partial x_{i+2}} x_{i}- \\
& \frac{1}{2} t \frac{\partial f}{\partial x_{i+2}} x_{i+1} \frac{\partial g}{\partial x_{i+1}} x_{i+2}-\frac{1}{2} t \frac{\partial f}{\partial x_{i+2}} x_{i+2} \frac{\partial g}{\partial x_{i+1}} x_{i+1}- \\
& \left.\frac{\partial f}{\partial x_{i+2}} x_{i} \frac{\partial g}{\partial x_{i+1}} x_{i}\right) .
\end{aligned}
$$

This bracket does not satisfy the Jacobi identity.

The corresponding Poisson structure on $\mathbb{C} P^{2}$ is given by

$$
\{f, g\}=\operatorname{tr}\left(\sum_{1 \leq i, j \leq 2} \frac{\partial f}{\partial u_{i}} \Theta_{i, j}\left(\frac{\partial g}{\partial u_{j}}\right)\right)
$$

where

$$
\begin{gathered}
\Theta_{1,1}=-u_{1} u_{2} \otimes u_{2}+u_{2} \otimes u_{1} u_{2}, \quad \Theta_{2,2}=u_{2} u_{1} \otimes u_{1}-u_{1} \otimes u_{2} u_{1} . \\
\Theta_{1,2}=u_{1}^{2} \otimes u_{1}+u_{2} \otimes u_{2}^{2}+\frac{t}{4} u_{2} \otimes u_{1}+\frac{t}{4} u_{1} \otimes u_{2}+1 \\
\Theta_{2,1}=-u_{1} \otimes u_{1}^{2}-u_{2}^{2} \otimes u_{2}-\frac{t}{4} u_{2} \otimes u_{1}-\frac{t}{4} u_{1} \otimes u_{2}-1 .
\end{gathered}
$$

This bracket satisfies the Jacobi identity.

Non-abelian Poisson structures on $\mathbb{C} P^{N-1}$

Let us generalize the usual definition to the noncommutative case. We embed our free associative algebra $A=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ into the algebra of non-abelian Laurent polynomials $\hat{A}=\mathbb{C}\left[x_{1}, \ldots, x_{N}, x_{1}^{-1}, \ldots, x_{N}^{-1}, a, a^{-1}\right]$, where a is an additional auxiliary generator.

Let $\hat{\mathcal{T}}=\hat{A} /[\hat{A}, \hat{A}]$. We define a homomorphism
$f \mapsto f^{a}, f \in \hat{A}$ of the algebra \hat{A} to itself by $x_{i} \mapsto a x_{i}, i=1 \ldots, N$ and $a \mapsto a$.

Definition. An element $f \in \hat{A}$ is called homogeneous if $f^{a}=f$. In this case an element $\operatorname{tr}(f) \in \hat{\mathcal{T}}$ is also called homogeneous.

We consider $x_{1}, \ldots, x_{N} \in A$ as homogeneous coordinates on a noncommutative projective space $\mathbb{C} P^{N-1}$. Homogeneous elements in \hat{F} are considered as functions on $\mathbb{C} P^{N-1}$.

Proposition. Let $f \in \hat{\mathcal{T}}$ be a homogeneous element. Then the following identities hold:

$$
\begin{equation*}
x_{1} \frac{\partial f}{\partial x_{1}}+\ldots+x_{N} \frac{\partial f}{\partial x_{N}}=0, \quad \frac{\partial f}{\partial x_{1}} x_{1}+\ldots+\frac{\partial f}{\partial x_{N}} x_{N}=0 . \tag{33}
\end{equation*}
$$

Define a homogeneous non-abelian bivector field

$$
\begin{equation*}
\nu(f, g)=\operatorname{tr}\left(\sum_{i, j, r \in \mathbb{Z} / N \mathbb{Z}} c_{i-j, r} \frac{\partial f}{\partial x_{i}} x_{i-r} \frac{\partial g}{\partial x_{j}} x_{j+r}\right), \tag{34}
\end{equation*}
$$

where

$$
\begin{gather*}
c_{i, r}=\frac{\theta_{0}^{\prime}(0) \theta_{i+r(k-1)}(0)}{\theta_{k r}(0) \theta_{i-r}(0)}, \quad r \neq 0, i, \tag{35}\\
c_{0,0}=0, \quad c_{i, 0}=\frac{\theta_{i}^{\prime}(0)}{\theta_{i}(0)}, \quad c_{i, i}=\frac{\theta_{k i}^{\prime}(0)}{\theta_{k i}(0)} .
\end{gather*}
$$

Remark. The non-abelian bivector field defined by (34) does not give an affine non-abelian Poisson structure. However, its abelianization satisfies the Jacobi identity and coincides with the Poisson algebra $q_{N, k}(\tau)$.

Remark. In the case $k=N-1$ the non-abelian bivector field (34) is nonzero.

The following statement is the main result:
Theorem. For any coprime N and k the formula (34) defines a non-abelian Poisson structure of the form (32) on $\mathbb{C} P^{N-1}$.

Theta functions of one variable

Define a holomorphic function $\theta(z)$ by

$$
\theta(z)=\sum_{\alpha \in \mathbb{Z}}(-1)^{\alpha} e^{2 \pi i\left(\alpha z+\frac{\alpha(\alpha-1)}{2} \tau\right)}
$$

It is clear that
$\theta(z+1)=\theta(z), \quad \theta(z+\tau)=-e^{-2 \pi i z} \theta(z), \quad \theta(-z)=-e^{-2 \pi i z} \theta(z)$.
Define the so called theta functions with characteristics by

$$
\begin{gathered}
\theta_{\alpha}(z)=\theta\left(z+\frac{\alpha}{N} \tau\right) \theta\left(z+\frac{1}{N}+\frac{\alpha}{N} \tau\right) \ldots \theta\left(z+\frac{N-1}{N}+\frac{\alpha}{N} \tau\right) \times \\
e^{\pi i\left((2 \alpha-N) z-\frac{\alpha}{N}+\frac{\alpha(\alpha-N)}{N} \tau\right)}
\end{gathered}
$$

One can check that $\theta_{\alpha+N}(z)=\theta_{\alpha}(z)$ so we can consider α as an element in $\mathbb{Z} / N \mathbb{Z}$.

One can also check that

$$
\theta_{\alpha}(z+1)=(-1)^{N} \theta_{\alpha}(z), \quad \theta_{\alpha}(z+\tau)=-e^{-2 \pi i N\left(z+\frac{1}{2} \tau\right)} \theta_{\alpha}(z)
$$

and

$$
\begin{equation*}
\theta_{\alpha}(-z)=-e^{-\frac{2 \pi i \alpha}{N}} \theta_{-\alpha}(z) \tag{36}
\end{equation*}
$$

The following identities can be proved in a standard way. Lemma. Let $N=3$. Then

$$
\theta_{0}(z)^{3}+\theta_{1}(z)^{3}+\theta_{2}(z)^{3}+3 t \theta_{0}(z) \theta_{1}(z) \theta_{2}(z)=0
$$

where t is a certain function in τ.
Lemma. Let $N>3$. Then

$$
\begin{gathered}
\theta_{j+k}(0) \theta_{j-k}(0) \theta_{l+i}(z) \theta_{l-i}(z)+\theta_{k+i}(0) \theta_{k-i}(0) \theta_{l+j}(z) \theta_{l-j}(z)+ \\
\theta_{i+j}(0) \theta_{i-j}(0) \theta_{l+k}(z) \theta_{l-k}(z)=0
\end{gathered}
$$

for arbitrary $i, j, k, l \in \mathbb{Z} / N \mathbb{Z}$. In particular, for $z=0$ we have

$$
\begin{gathered}
\theta_{j+k}(0) \theta_{j-k}(0) \theta_{l+i}(0) \theta_{l-i}(0)+\theta_{k+i}(0) \theta_{k-i}(0) \theta_{l+j}(0) \theta_{l-j}(0)+ \\
\theta_{i+j}(0) \theta_{i-j}(0) \theta_{l+k}(0) \theta_{l-k}(0)=0
\end{gathered}
$$

