Set-theoretic Yang-Baxter equation, twists & quandle Hopf algebras

Anastasia Doikou

Heriot-Watt University

November, 2024

References

- 1 AD, B. Rybolowicz, P. Stefanelli, Quandles as pre-Lie skew braces, set-theoretic Hopf algebras & universal R-matrices, J. Phys. A: Math. Theor. 57 405203 (2024), arXiv:2401.12704.
- 2 AD, B. Rybolowicz, Novel non-involutive solutions of the Yang-Baxter equation from (skew) braces, Journal of the London Mathematical Society. 110, 4 (2024) e12999, arXiv:2204.11580.
- 3 AD, A. Ghionis, B. Vlaar, Quasi-bialgebras from set-theoretic type solutions of the Yang-Baxter equation, Lett. Math. Phys.112, 78 (2022), arXiv:2203.03400.
- 4 AD, Set theoretic Yang-Baxter equation, braces and Drinfeld twists, J. Phys. A 54 (2021) 415201, arXiv:2102.13591.
- 5 AD, A. Skoktunowicz, Set theoretic Yang-Baxter & reflection equations and quantum group symmetries, Lett. Math. Phys. 111, 105 (2021), arXiv:2003.08317.
- 6 AD, Parametric set-theoretic Yang-Baxter equation: p-racks, solutions & quantum algebras arXiv:2405.04088.
- 7 AD, Self-distributive structures, braces the Yang-Baxter equation, arXiv:2409.20479.

Review

- YBE introduced: Yang, study of N particle in δ potential & Baxter, study of XYZ model.
- **Fundamental equ. in QISM formulation** [Faddeev, Tahktajan, Sklyanin, Kulish, Reshetikhin....] & quantum algebras [Drinfeld, Jimbo]
- \bullet [Drinfeld] introduced the Set-theoretic YBE.
- Connections to: braid theory, Hopf algebras, knot theory, low dimensional topology, Hopf-Galois extensions, ternary structures, such as heaps & trusses ...

Review

- \bullet [Hietiranta] first to find examples of set-theoretic solutions. [Etingof, Shedler & Soloviev] set-theoretic solutions & quantum groups for param. free R-matrices.
- **Connections to: geometric crystals** [Berenstein & Kazhdan, Etingof] and cellular automatons [Hatayama, Kuniba & Takagi]. Etingof rational solutions from geometric crystal theory.
- Classical discrete integrable systems (YB maps), quad-graph, discrete maps, solitons interactions: [Veselov, Bobenko, Suris, Papageorgiou, Tongas,...] Parametric!
- **•** Set-theoretic involutive solutions of YBE from **braces**: [Rump, Guarnieri, Vendramin, Gateva-Ivanova, Cedó, Jespers, Okniński, Smoktunowicz,...]

Talk outline

- **I** will discuss the algebraic approach for solving the set-theoretic YBE, basic blueprint in [AD, Rybolowicz, Stefanelli] (parametric case [AD])
- Preliminaries and motivations. Introduce the set-theoretic YBE and the notions of shelves, racks and quandles.
- Admissible Drinflel'd twist: all set-theoretic solutions obtained from shelves (racks) or th flip map and an admissible twist! Prototypical algebraic solutions presented.
- Formulate the underlying quasi-triangular Hopf algebraic structures. Well known examples of quantum algebras: Yangians and q-deformed algebras. A new paradigm of Quantum Algebras (especially the parametric case!)

Preliminaries: Set-theoretic braid equation

• Let a set $X = \{x_1, \ldots, x_N\}$ and $\check{r} : X \times X \to X \times X$. Denote $\check{r} : X \times X \times X$

Solution of the braid equation

$$
\check{r}(x,y)=(\sigma_x(y),\tau_y(x))
$$

- \bullet (X, \check{r}) non-degenerate: σ_x and τ_y are bijective functions **2** (X, \check{r}) involutive: $\check{r}(\sigma_x(y), \tau_y(x)) = (x, y), \; \check{r}^2 = \mathrm{id}$
- \bullet Suppose (X, \breve{r}) is an involutive, non-degenerate set-theoretic solution of the Braid equation:

 $(\check{r} \times id_X)(id_X \times \check{r})(\check{r} \times id_X) = (id_X \times \check{r})(\check{r} \times id_X)(id_X \times \check{r}).$

Set-theoretic YBE

• Remark. if \check{r} satisfies the set-theoretic braid equation then $R := \check{r}\pi$ (π is the flip map: $\pi(a, b) = (b, a)$ for all $a, b \in X$) satisfies the YBE:

$$
R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}
$$

 $R(b, a) = (\sigma_a(b), \tau_b(a))$ and $R_{12}(c, b, a) = (\sigma_b(c), \tau_c(b), a) ...$

Then, the general solution of the set-theoretic YBE is a map $R: X \times X \rightarrow X \times X$, such that

Solution of the YBE

 $R(b, a) = (\sigma_a(b), \tau_b(a))$

Matrices

 ${\sf Linearization}\colon x_j\to {\sf e}_{x_j},$ then $\mathbb{B}=\{{\sf e}_{x_j}\},\,x_j\in X$ is a basis of $\mathcal{V}=\mathbb{C} X$ space of dimension equal to the cardinality of X . Recall, $e_{x,y} = e_x e_y^{\mathcal{T}}, \, \mathcal{N} \times \mathcal{N}$ matrices. Set-theoretic \check{r} as $\mathcal{N}^2 \times \mathcal{N}^2$ matrix:

Matrix form

$$
\breve{r} = \sum_{x,y \in X} e_{x,\sigma_x(y)} \otimes e_{y,\tau_y(x)}
$$

Then *i* satisfies:

$$
(\check{r}\otimes \mathsf{id}_X)(\mathsf{id}_X\otimes \check{r})(\check{r}\otimes \mathsf{id}_X)=(\mathsf{id}_X\otimes \check{r})(\check{r}\times \mathsf{id}_X)(\mathsf{id}_X\otimes \check{r}).
$$

Baxterization for involutive solutions: $\check{r}: V \otimes V \to V \otimes V: \check{r}^2 = I_{V \otimes V}$. Reps of the symmetric group. Baxterization:

$$
\check{R}(\lambda)=\lambda\check{r}+1_{V\otimes V}
$$

In the special case $\check{r} = \mathcal{P}$ (\mathcal{P} : permutation op) we recover the **Yangian**. If $\lambda = 0$ then $\check{r} = 1_{V \otimes V} \rightarrow$ commuting Hamiltonians!

Local Hamiltonians

• Results by [AD & Smoktunowicz].

Local Hamiltonian

.

$$
H = \sum_{n=1}^{N} \sum_{x,y \in X} e_{x,\sigma_x(y)}^{(n)} e_{y,\tau_y(x)}^{(n+1)}
$$

Unlike Yangian, periodic Ham is not \mathfrak{gl}_N symmetric...Surprise! (twisted Yangian coproduts, quasi bialgebra!). Lyubashenko solution, $\sigma(y) = y + 1$, $\tau(x) = x - 1$, $\text{mod } N$, $x, y \in \{1, 2, ..., N\}$,

$$
H = \sum_{n=1}^{N} \sum_{x,y=1}^{N} e_{x,y+1}^{(n)} e_{y,x-1}^{(n+1)}
$$

- **•** Spectrum and eigenstates of commuting Hams challenging (symmetries of transfer matrix). Deriving Drinfeld twist key steps [AD] (non-local maps [Soloviev])!
- q -deformed version of the involutive set-theoretic solutions has been constructed via an admissible Drinfeld twist [AD & Smoktunowicz].

Shelves, racks & quandles

- **•** Focus on special non-involutive set-theoretic solutions $\check{r}(x, y) = (y, y \triangleright x)$, where \triangleright : $X \times X \rightarrow X$, some binary operation.
- **O** Shelves, racks & quandles [*Joyce, Matveev, Dehornoy,....*] satisfy axioms analogous to the Reidemeister moves used to manipulate knot diagrams. Link invariants, coloring of links a knot is tri-colored or not; Alexander's theorem: all links closed braids.

Definition

Let X be a non-empty set and \triangleright a binary operation on X. Then, the pair (X, \triangleright) is said to be a *left shelf* if \triangleright is left self-distributive, namely, the identity

$$
a\triangleright (b\triangleright c)=(a\triangleright b)\triangleright (a\triangleright c)
$$

is satisfied, for all $a, b, c \in X$. Moreover, a left shelf (X, \triangleright) is called

- **1** a *left rack* if a is bijective, for every $a \in X$.
- 2 a quandle if (X, \triangleright) is a left rack and $a \triangleright a = a$, for all $a \in X$.

Shelves, racks & quandles

- **1** Conjugate quandle. Let (X, \cdot) be a group and $\triangleright : X \times X \rightarrow X$, such that $a \triangleright b = a^{-1} \cdot b \cdot a$. Then (X, \triangleright) is a quandle.
- 2 Core quandle: Let (X, \cdot) be a group and $\triangleright : X \times X \rightarrow X$, such that $a \triangleright b = a \cdot b^{-1} \cdot a$. Then (X, \triangleright) is a quandle.
- **3** Affine (or Alexander) quandle. Let X be a non empty set equipped with two group operations, $+$ and \circ . Define $\triangleright : X \times X \to X$, such that for $z \in X$ and ∀ a, $b\in X$, a ⊳ $b=-$ a ∘ z $+$ b ∘ z $+$ a. Similar to a $\mathbb{Z}(t,t^{-1})$ ring module. (For non-abelian $(X,+)$ [AD, Stefanelli, Rybolowicz]).

Proposition

Let X be a non empty set, then the map $\check{r}: X \times X \to X \times X$, such that $\breve{r}(a, b) = (b, b \triangleright a)$ is a solution of the braid equation if and only if (X, \triangleright) is a shelve. The solution is invertible if and only if (X, \triangleright) is a rack.

- Solutions from quandles non-involutive! All non-involutive set-theoretic solutions come from quandles by admissible Drinfeld twist [AD, Rybolowicz, Stefanelli].
- **•** Extra motivation: *q*-deformed racks, quandles....from *q* braids.

 $\breve{r}^{-1}(a,b)=(a\triangleright^{-1}b,a),\ \breve{r}(a,b)=(a\triangleright b,a)$ also solution of braid equ.

Self-distributivity - shelve solutions

Examples of quandles

- **■** Let $i, j \in X := \{1, 2, ..., n\}$ and define $i \triangleright j = 2i j$ mod $n : (X, \triangleright)$ is a quandle called the dihedral quandle (a core quandle).
- **O** Special case [Dehornoy]. $n = 3$, $X = \{x_1, x_2, x_3\}$, $\triangleright : X \times X \rightarrow X$, such that:

• The 3D vector space. The canonical basis:

$$
\hat{e}_{x_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \hat{e}_{x_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \hat{e}_{x_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$

Recall $\breve{r}=\sum_{x,y\in X}e_{x,y}\otimes e_{y,y\triangleright x},$ where $e_{x,y}$ the elementary 3×3 matrix $e_{x,y}=e_xe_y^{\pmb{T}}.$ I.e. $\check{r} = \sum_{j=1}^{3} e_{x_j, x_j} \otimes e_{x_j, x_j} + e_{x_1, x_2} \otimes e_{x_2, x_3} + e_{x_2, x_1} \otimes e_{x_1, x_3} + \ldots$

The \check{r} matrix:

$$
\check{r} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
$$

 $\check{r}^{-1} = \check{r}^T$. Unitary quantities from Twisted Yangian, [AD] in progress.

Combinatorial matrices! [Kauffman...]: **qudits, topological quantum computing** - braid gates.

KEY STATEMENTS.

- **1** All involutive set-theoretic solutions of the braid equation, $\breve{r} = \sum_{a,b \in X} e_{a,\sigma_a(b)} \otimes e_{b,\tau_b(a)}$ come from the permutation operator via an admissible Drilfenl'd twist (similarity) [AD].
- 2 All generic non-involutive set-theoretic solutions \check{r} come from quandle solutions operator via an admissible Drilfenl'd twist [AD, Stefanelli, Rybolowicz]. Generalized in the parametric case [AD].

Generic solutions

 \bullet We focus on generic solutions of the set-theoretic YBE, $\check{r}: X \times X \rightarrow X \times X$, such that for all $a, b \in X$,

 $\breve{r}(a, b) = (\sigma_a(b), \tau_b(a))$

- **In this case, biracks and biquandles (two binary operations):** virtual links & braids (ribbons).
- **•** Generic solutions obtained via admissible Drinfeld twist!!

Proposition

Let X, be a non-empty set, and define for all $a, b \in X$, the maps $\sigma_a, \tau_b : X \to X$, $b \mapsto \sigma_a(b)$ and $a \mapsto \tau_b(a)$. Then $\check{r} : X \times X \to X \times X$, such that for all $a, b \in X$, $\breve{r}(a, b) = (\sigma_a(b), \tau_b(a))$ is a solution of the set-theoretic braid equation if and only if

$$
\sigma_a(\sigma_b(c)) = \sigma_{\sigma_a(b)}(\sigma_{\tau_b(a)}(c))
$$

\n
$$
\tau_c(\tau_b(a)) = \tau_{\tau_c(b)}(\tau_{\sigma_b(c)}(a))
$$

\n
$$
\sigma_{\tau_{\sigma_b(c)}(a)}(\tau_c(b)) = \tau_{\sigma_{\tau_b(a)}(c)}(\sigma_a(b)).
$$

Skew braces

• Introduce fundamental useful algebraic structures.

Definition (skew braces)

 $[Rump, Guarnieri & Vendramin]$ A left skew brace is a set B together with two group operations $+$, \circ : $B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that for all $a, b, c \in B$.

 $a \circ (b + c) = a \circ b - a + a \circ c.$

If $+$ is an abelian group operation B is called a *left brace*. Moreover, if B is a left skew brace and for all $a, b, c \in B$ $(b + c) \circ a = b \circ a - a + c \circ a$, then B is called a two sided skew brace.

 \bullet The additive identity of B will be denoted by 0 and the multiplicative identity by 1. In every skew brace $0 = 1$. Braces \rightarrow radical rings [Rump, Smoktunowicz,...]! From now on when we say skew brace we mean left skew brace.

Examples of braces

Example

1. Finite braces. Let $U(\mathbb{Z}/2^n\mathbb{Z}) =: U_n$ denote a set of odd integers mod 2^n , $n \in \mathbb{N}$. Define also $+_1$: $U_n \times U_n \rightarrow U_n$, such that $a +_1 b := a - 1 + b$, for all $a, b \in U_n$. Moreover, $+$ is the usual addition and \circ is the usual multiplication of integers. Then the triplet $(U_n, +_1, \circ)$ is a brace. For instance: 1. $n = 1$, $U_1 = \{1\}$, 2. $n = 2$, $U_2 = \{1, 3\}, 3.$ $n = 3, U_2 = \{1, 3, 5, 7\}$...

Example

2. Infinite braces. Consider a set $O := \{\frac{2n+1}{2k+1} | n, k \in \mathbb{Z}\}$ together with two binary operations $+_1$: $O \times O \rightarrow O$ such that $(a, b) \mapsto a - 1 + b$ and $\circ : O \times O \rightarrow O$ such that $(a, b) \mapsto a \circ b$, where $+, \circ$ are addition and multiplication of rational numbers, respectively. Then the triplet $(O, +_1, \circ)$ is a brace

Solutions from skew braces

Proposition (Rump - Guarnieri & Vendramin)

Let $(X, +, \circ)$ be a skew brace and define $\sigma_a : X \to X$, such that $\sigma_a(b) = -a + a \circ b$ and $a \circ b = \sigma_a(b) \circ \tau_b(a)$. Then $\check{r} : X \times X \to X \times X$, such that $\breve{r}(a, b) = (\sigma_a(b), \tau_b(a))$ is a solution of the set-theoretic braid equation.

• Remark. If $(X, +, \circ)$ is a brace (Rump), i.e. $(X, +)$ is abelian, \check{r} is involutive, $\check{r}^2 = id.$

All involutive set-theoretic solutions \check{r} are obtained from the flip map via an admissible twist (the corresponding solutions of the YBE are obtained from the identity map.)

Admissible Drinfel'd twists

Definition

Let (X, \check{r}) and (X, \check{s}) be solutions of the set-theoretic braid equation. We say that a map $\varphi: X \times X \to X \times X$ is a Drinfel'd twist (D-twist) if

 φ $\check{r} = \check{s} \varphi$.

If φ is a bijection we say that (X, \check{r}) and (X, \check{s}) are D-equivalent (via φ), and we denote it by $\check{r} \cong D \check{s}$.

Proposition

Let (X, \check{r}) be a left non-degenerate solution, such that for $a, b \in X$, $\breve{r}(a, b) = (\sigma_a(b), \tau_b(a))$ and let (X, \breve{s}) be a solution, such that for $a, b \in X$, $\breve{s}(a,b)=(b,b\triangleright a)$ and $\tau_b(a):=\sigma^{-1}_{\sigma_a(b)}(\sigma_a(b)\triangleright a).$ Then \breve{r} is D -equivalent to $\breve{s}.$ **Proof.** Let φ : $X \times X \to X \times X$ be the map defined by $\varphi(a, b) := (a, \sigma_a(b))$, for all $a, b \in X$, (φ is bijective). Then

$$
\varphi^{-1} \circ \varphi(a,b) = \ldots = (\sigma_a(b), \tau_b(a)) = \check{r}(a,b),
$$

where $\tau_b(a):=\sigma^{-1}_{\sigma_a(b)}(\sigma_a(b)\triangleright a).$ That is $\check{r}\cong_D \check{s}.$

● Remark. In the special case of involutive ř-matrices we observe that $\sigma_{\sigma_{a}(b)}(\tau_{b}(a))=$ a, which leads to $b\triangleright a=a,$ and hence $\check{s}(a,b)=(b,a)$ for all $a, b \in X$, i.e. $\breve{s} = \pi$, i.e. the flip map.

Admissible twists & general solutions

Definition

Let (X, \triangleright) be a shelf. We say that the twist $\varphi : X \times X \rightarrow X \times X$, such that $\varphi(a, b) := (a, \sigma_a(b))$ for all $a, b \in X$, is admissible, if for all $a, b, c \in X$: $\sigma_a(\sigma_b(c)) = \sigma_{\sigma_a(b)}(\sigma_{\tau_b(a)}(c))$ & $\sigma_c(b) \triangleright \sigma_c(a) = \sigma_c(b \triangleright a)$.

Theorem

Let (X, \triangleright) be a shelf and $\varphi : X \times X \to X \times X$, such that $\varphi(a, b) := (a, \sigma_a(b))$ for all a, $b \in X$. Then, the map $\check{r} : X \times X \to X \times X$ defined by

$$
\breve{r}(a,b) = \left(\sigma_a(b), \sigma_{\sigma_a(b)}^{-1}(\sigma_a(b) \triangleright a)\right)
$$

for all $a, b \in X$, is a solution of the braid equ. if and only if φ is an admissible twist.

Proof. The proof is quite involved based on the (1) , (2) of the Definition of the adm. twist and the three fundamental relations from the braid equation.

Corollary 1.

Any left non-degenerate solution $\check{r}: X \times X \to X \times X$. $\breve{r}(a, b) = (\sigma_a(b), \tau_b(a))$, for all $a, b \in X$, is obtained from a shelve solution, where $a \triangleright b = \sigma_a(\tau_{\sigma_b^{-1}(a)}(b)),$ via an admissible twist.

Corollary 2.

A left non-degenerate solution (X, \check{r}) is bijective if and only if (X, \check{r}) is a rack.

- **Conclusion.** The problem of finding generic solutions of the set-theoretic braid equation is reduced to the classification of shelve/rack solutions and the identification of admissible twists.
- **•** For \check{r} being involutive it suffices to find for all $a \in X$, a bijective map $\sigma_a: X \to X$ such that, $\sigma_a(\sigma_b(c)) = \sigma_{\sigma_a(b)}(\sigma_{\tau_b(a)}(c)).$

Solutions from quandles via twists

We assume the existence of the bijective map $\sigma_a: X \to X$ and $(X, +, \circ)$ is a skew brace.

- **1** From the conjugate quandle. This case corresponds to latter Proposition. $\sigma_a(b) = -a + a \circ b$ provides a solution to the YBE. Also, $a \circ b = \sigma_a(b) \circ \tau_b(a)$ (Guarnieri-Vendramin solution).
- **2** From the affine quandle. $\sigma_a(b) = -f(a) + a \circ b$, where $f(a) := a \circ z z$, $z \in X$ is a fixed element. Also, $a \circ b = \sigma_a(b) \circ \tau_b(a)$ (deformed solutions AD & Rybolowicz).
- **3 From the core quandle.** $\sigma_a(b) = a + a \circ b$. σ_a provides a solution of the YBE if and only if $(X,+)$ is abelian group. Also, $a \circ b = \sigma_a(b) \circ \tau_b(a)$ (AD).

Part II: Hopf algebras

- **•** Recall linearization: tensor products
	- $\textbf{P} \ R = \sum_{a,d \in X} \textit{e}_{b,\sigma_a(b)} \otimes \textit{e}_{a,\tau_b(a)},$ generic set-theoretic solutions: 2 $R = \sum_{a,b \in X} e_{b,a} \otimes e_{a,b\triangleright a},$ shelve solutions,
- We establish the algebraic framework in the tensor product formulation. This naturally provides solutions to set-theoretic YBE, thus the linearized version is essential in what follows.
- \bullet Next, explore algebraic structures that provide universal \mathcal{R} -matrices associated to rack and general set-theoretic solutions of the YBE.

Rack algebras

Definition

Let X be a non-empty set. We define the binary operation, $\triangleright : X \times X \to X$, $(a, b) \mapsto a \triangleright b$. Let also (X, \triangleright) be a finite magma, or such that $a \triangleright$ is surjective, for every $a \in X$. We say that the unital, associative algebra \mathcal{Q} , over a field k generated by, $1_{\mathcal{Q}}, q_a, (q_a^{-1}, h_a \in \mathcal{Q}$ $(h_a = h_b \Leftrightarrow a = b)$ and relations for all $a, b \in X$:

$$
q_a q_a^{-1} = q_a^{-1} q_a = 1_{\mathcal{Q}}, \quad q_a q_b = q_b q_{b \triangleright a},
$$

$$
h_a h_b = \delta_{a,b} h_a, \quad q_b h_{b \triangleright a} = h_a q_b
$$

is a rack algebra.

The choice of the name rack algebra is justified by the following result.

Proposition

Let Q be the rack algebra, then for all a, b, $c \in X$ $c \triangleright (b \triangleright a) = (c \triangleright b) \triangleright (c \triangleright a)$, i.e. (X, \triangleright) is a rack.

Proof. Compute $h_a q_b q_c$ using associativity and invertibility of q_a for all $a \in X$.

$$
h_{c\triangleright(b\triangleright a)} = h_{(c\triangleright b)\triangleright(c\triangleright a)} \Rightarrow c\triangleright(b\triangleright a) = (c\triangleright b)\triangleright(c\triangleright a).
$$

 $a \triangleright$ is bijective, thus (X, \triangleright) is a rack.

The universal R-matrix

Proposition

Let Q be the rack algebra and $\mathcal{R} \in \mathcal{Q} \otimes \mathcal{Q}$ be an invertible element, such that $\mathcal{R}=\sum_{\mathsf{a}}h_{\mathsf{a}}\otimes q_{\mathsf{a}}.$ Then $\mathcal R$ satisfies the Yang-Baxter equation

$$
\mathcal{R}_{12}\mathcal{R}_{13}\mathcal{R}_{23}=\mathcal{R}_{23}\mathcal{R}_{13}\mathcal{R}_{12}
$$

$$
\mathcal{R}_{12} = \sum_{a \in X} h_a \otimes q_a \otimes 1_{\mathcal{Q}}, \mathcal{R}_{13} = \sum_{a \in X} h_a \otimes 1_{\mathcal{Q}} \otimes q_a, \text{ and}
$$

$$
\mathcal{R}_{23} = \sum_{a \in X} 1_{\mathcal{Q}} \otimes h_a \otimes q_a.
$$
 The inverse \mathcal{R} -matrix is $\mathcal{R}^{-1} = \sum_{a \in X} h_a \otimes q_a^{-1}$.

Proof. From YBE and rack algebra relations. Also, $\mathcal{R}^{-1} = \sum_{a \in X} h_a \otimes q_a^{-1}.$

Fundamental representation: Recall, $e_{i,j}$, $n \times n$ matrices with elements $({\sf e}_{i,j})_{k,l}=\delta_{i,k}\delta_{j,l}.$ Let ${\cal Q}$ be the rack algebra and $\rho:{\cal Q}\to \sf{End}(V),$ defined by $q_a\mapsto \sum_{\mathsf{x}\in\mathsf{X}}e_{\mathsf{x},\mathsf{a}\rhd \mathsf{x}},\quad h_a\mapsto e_{a,a}.$ Then $\mathcal{R}\mapsto \mathsf{R}=\sum_{a,b\in\mathsf{X}}e_{b,b}\otimes e_{a,b\triangleright a}$: the linearized rack solution.

Quandle Hopf algebras

Definition

A rack algebra Q is called a quandle algebra if there exits a left quasigroup (X, \bullet) , such that $a \bullet b = b \bullet (b \triangleright a)$, for all $a, b \in X$.

Theorem

Let A be the quandle algebra with (X, \bullet, e) being a group. Let also $\mathcal{R}=\sum_{a\in\mathcal{X}}h_a\otimes q_a$ be a solution of the Yang-Baxter equation and $q_aq_b=q_{a\bullet b}$ for all a, $b \in X$. Then the structure $(A, \Delta, \epsilon, S, \mathcal{R})$ is a quasi-triangular Hopf algebra:

- Co-product. $\Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$, $\Delta(q_a^{\pm 1}) = q_a^{\pm 1} \otimes q_a^{\pm 1}$ and $\Delta(h_a) = \sum_{b,c \in X} h_b \otimes h_c \Big|_{b \bullet c = a}.$
- Co-unit. $\epsilon : \mathcal{A} \to k$, $\epsilon(q_a^{\pm 1}) = 1$, $\epsilon(h_a) = \delta_{a,e}$.
- Antipode. $S:\mathcal{A}\to\mathcal{A},\ \ S(q_a^{\pm 1})=q_a^{\mp 1},\ S(h_a)=h_{a^*},$ where a^* is the inverse in (X, \bullet) for all $a \in X$.

• Relevant: Pointed Hopf Algebras from racks [Andruskiewitsch & Grana].

Proof (quandle quasi-triangular Hopf algebra). Show all the axioms of a quasi-triangular Hopf algebra. First,

$$
\mathcal{R}_{13}\mathcal{R}_{12} = \sum_{a \in X} h_a \otimes q_a \otimes q_a =: \sum_{a \in X} h_a \otimes \Delta(q_a) =: (id \otimes \Delta)\mathcal{R},
$$

$$
\mathcal{R}_{13}\mathcal{R}_{23} = \sum_{a,b \in X} h_a \otimes h_b \otimes q_c \Big|_{a \bullet b = c} =: \sum_{c \in X} \Delta(h_c) \otimes q_c =: (\Delta \otimes id)\mathcal{R},
$$

read of $\Delta(h_a)$, $\Delta(q_a)$ as:

$$
\Delta(q_a^{\pm 1}) = q_a^{\pm 1} \otimes q_a^{\pm 1}, \quad \Delta(h_a) = \sum_{b,c \in X} h_b \otimes h_c \Big|_{b \bullet c = a}.
$$

 $\Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ is an algebra homomorphism, checked via the distributivity condition $a \triangleright (b \bullet c) = (a \triangleright b) \bullet (a \triangleright c)$, which follows from, $a \triangleright b = a^* \bullet b \bullet a$.

Moreover,

$$
\Delta^{(op)}(q_a^{\pm 1})\mathcal{R}=\mathcal{R}\Delta(q_a^{\pm 1})\quad \Delta^{(op)}(h_a)\mathcal{R}=\mathcal{R}\Delta(h_a),
$$

 $\Delta^{(op)} = \pi \circ \Delta$, π is the flip map.

Proof. Check co-associativity and uniquely derive the counit $\epsilon : A \rightarrow k$ (homomorphism) and antipode $S : A \rightarrow A$ (anti-homomorphism).

 \bigcirc Co-associativity: (id ⊗ Δ) $\Delta = (\Delta \otimes id)\Delta$.

$$
(\mathrm{id} \otimes \Delta)\Delta(q_a) = (\Delta \otimes \mathrm{id})\Delta(q_a) = q_a \otimes q_a \otimes q_a,
$$

\n
$$
(\mathrm{id} \otimes \Delta)\Delta(h_a) = (\Delta \otimes \mathrm{id})\Delta(h_a) = \sum_{b,c,d \in X} h_b \otimes h_c \otimes h_d \Big|_{b \bullet c \bullet d = a}.
$$

ii Counit: $(\epsilon \otimes id)\Delta(x) = (id \otimes \epsilon)\Delta(x) = x$, for all $x \in \{q_a, q_a^{-1}, h_a\}$. The generators q_a are group-like elements, so $\epsilon(q_a) = 1$, and

$$
\sum_{a,b\in X} \epsilon(h_a) h_b = \sum_{a,b} h_a \epsilon(h_b) \Big|_{a \bullet b = c} = h_c \Rightarrow \epsilon(h_a) = \delta_{a,e}.
$$

iii Antipode: m (S ⊗ id)∆(x)) = m (id ⊗ S)∆(x)) = ϵ(x)1^A for all $x \in \{q_a, q_a^{-1}, h_a\}.$ For q_a , we immediately have $S(q_a) = q_a^{-1}$ and (recall $h_a h_b = \delta_{a,b} h_a$ and $\sum_{a \in X} h_a = 1_{\mathcal{A}}$) $_{a\in X}$ $h_a=1_{\mathcal{A}}$ $\sum_{k \in \mathcal{N}} S(h_a) h_b \Big|_{a \bullet b=c} = \sum_{k \in \mathcal{N}} h_a S(h_b) \Big|_{a \bullet b=c} = \delta_{c,e} 1_{\mathcal{A}} \Rightarrow S(h_a) = h_{a^*},$

a,
$$
b \in X
$$

\nthere a^* is the inverse in (X, \bullet) for all $a \in X$. $(A, \Delta, \epsilon, S, \mathcal{R})$ is indeed a

W_w quasi-triangular Hopf algebra.

Co-associativity

The *n*-coproducts $\Delta^{(n)}: A \to A^{\otimes n}$, such that for all $a_1, a_2, \ldots, a_n \in X$,

$$
\Delta^{(n)}(q^{\pm 1}) = q_a^{\pm 1} \otimes q_a^{\pm 1} \otimes \ldots \otimes q_a^{\pm 1},
$$

$$
\Delta^{(n)}(h_a) := \sum_{a_1, \ldots, a_n \in X} h_{a_1} \otimes h_{a_2} \otimes \ldots \otimes h_{a_n} \Big|_{a_1 \bullet a_2 \bullet \ldots \bullet a_n = a}.
$$

• Remark (no co-associativity). Let (X, \triangleright) be a quandle and (X, \bullet) be a magma with a left neutral element, such that $a \bullet b = b \bullet (b \triangleright a)$. A is the quandle algebra, $\mathcal{R}=\sum_{a\in\mathcal{X}}h_a\otimes q_a$ is the associated universal \mathcal{R} -matrix and $q_a, F_a: X \to A$, $q_a q_b = F_{a \bullet b}$ and $a \triangleright (b \bullet c) = (a \triangleright b) \bullet (a \triangleright c)$. Then $(A, \Delta, \epsilon, \mathcal{R})$ is a quasi-triangular quasi-bialgebra as no co-associativity holds [AD, Rybolowicz, Stefanelli]!

The decorated rack algebra

Definition

Let Q be the rack algebra. Let also σ_a , τ_b : $X \to X$, and σ_a be a bijection for all $a \in X$, $z_{i,j} \in Y$. We say that the unital, associative algebra \hat{Q} over k, generated by intederminates $q_a, q_a^{-1}, h_a \in \mathcal{Q}$ and $w_a, w_a^{-1} \in \hat{\mathcal{Q}}, \ a \in X, \ 1_{\hat{\mathcal{Q}}} = 1_{\mathcal{Q}}$ is the unit element and relations, for $a, b \in X$,

$$
q_a q_a^{-1} = q_a^{-1} q_a = 1_{\hat{Q}}, \quad q_a q_b = q_b q_{b \triangleright a}, \quad h_a h_b = \delta_{a,b} h_a,
$$

\n
$$
q_b h_{b \triangleright a} = h_a q_b \quad w_a (w_a)^{-1} = 1_{\hat{Q}}, \quad w_a w_b = w_{\sigma_a(b)} w_{\tau_b(a)}
$$

\n
$$
w_a h_b = h_{\sigma_a(b)} w_a, \quad w_a q_b = q_{\sigma_a(b)} w_a
$$

is a decorated rack algebra.

Proposition.

Let \hat{Q} be the decorated rack algebra, then for all a, b, $c \in X$:

 $\sigma_a(\sigma_b(c)) = \sigma_{\sigma_a(b)}(\sigma_{\tau_b(a)}(c))$ & $\sigma_c(b) \triangleright \sigma_c(a) = \sigma_c(b \triangleright a).$

Proof. Follow from the algebra associativity.These are the conditions of an admissible twist!

Proposition.

Let $\hat{\mathcal{Q}}$ be the decorated rack algebra and $\mathcal{R}=\sum_{a}h_{a}\otimes q_{a}\in\mathcal{Q}\otimes\mathcal{Q}$ be the universal R-matrix. We also define $\Delta: \mathcal{Q} \to \mathcal{Q} \otimes \mathcal{Q}$, such that for all $a \in X$,

$$
\Delta((y_a)^{\pm 1}):=(y_a)^{\pm 1}\otimes (y_a)^{\pm 1},\quad \Delta(h_a):=\sum_{b,c\in X}h_b\otimes h_c\Big|_{b\bullet c=a}
$$

.

 $y_a \in \{q_a, w_a\}.$ Then the following statements hold:

- \bullet Δ is a \hat{Q} algebra homomorphism.
- $2\ \ \mathcal{R}\Delta (y_a)=\Delta ^{(op)}(y_a)\mathcal{R},$ for $y_a\in \{q_a,\ w_a\},$ $a\in X.$ Recall, $\Delta ^{(op)}:=\pi\circ \Delta,$ where π is the flip map.

Universal R-matrix by twisting

Proposition. Let $\mathcal{R} = \sum_{a \in \mathcal{X}} h_a \otimes q_a \in \mathcal{Q} \otimes \mathcal{Q}$ be the rack universal $\mathcal{R}-$ matrix, $\hat{\cal Q}$ be the decorated rack algebra and ${\cal F}\in\hat{\cal Q}\otimes\hat{\cal Q},$ ${\cal F}=\sum_{b\in X}h_b\otimes (w_b)^{-1},$ then F is an admissible twist.

This guarantees that if R is a solution of the YBE then \mathcal{R}^F also is!

■ The twisted R–matrix:

 $\mathcal{R}^{\mathsf{F}} = \mathcal{F}^{(op)} \mathcal{R} \mathcal{F}^{-1}.$

The twisted coproducts: $\Delta^F(y) = \mathcal{F} \Delta(y) \mathcal{F}^{-1}, y \in \hat{\mathcal{Q}}$. Moreover it follows that $R\Delta^F(y) = \Delta^{F(op)}(y)R^F, y \in \hat{Q}.$

• Fundamental representation & the set-theoretic solution: Let \hat{Q} be the decorated p-rack algebra, $\rho : \hat{Q} \to \text{End}(V)$, such that

$$
q_a \mapsto \sum_{x \in X} e_{x,a\triangleright x}, \quad h_a \mapsto e_{a,a}, \quad w_a \mapsto \sum_{b \in X} e_{\sigma_a(b),b},
$$

then $\mathcal{R}^F\mapsto R^F=\sum_{a,b\in X} e_{b,\sigma_a(b)}\otimes e_{a,\tau_b(a)},$ where $\tau_b(\textsf{a}):=\sigma_{\sigma_a(\textsf{b})}^{-1}(\sigma_{\textsf{a}}(\textsf{b})\triangleright \textsf{a}).$

 R^F is the linearized version of the set-theoretic solution.

• The associated quantum algebra (non-parametric case) is a quasi-triangular quasi bialgebra [AD, Vlaar, Ghionis].