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Plan of the talk:

• Integrable systems and R-matrices

• Associative Yang-Baxter equation

• Integrable tops, spin chains, Sklyanin algebras, Gaudin models, etc.

• Model of interacting tops

• R-matrix valued Lax pairs and its relation to quantum interacting tops

• Long-range spin chains

• BC-version of associative Yang-Baxter equation and K-matrices



Integrable systems in classical mechanics

Hamiltonian mechanics: Hamiltonian function H and Poisson brackets { , } provide equations of
motion ḟ = {H, f}.

Many-body systems: N particles with positions qi ∈ C and momenta pi ∈ C and Hamiltonian

H =

N∑
i=1

p2
i

2
+

N∑
i<j

U(qi − qj) .

Canonical Poisson structure:

{pi, qj} = δij , {pi, pj} = {qi, qj} = 0 , i, j = 1...N .

We need: N independent integrals of motion Hk(p, q) with the involution property

{Hi, Hj} = 0 .



Integrable Euler-Arnold tops

Dynamical variables:

S =

N∑
i,j=1

SijEij ∈ Mat(N) ,

where Eij � is the standard basis in Mat(N,C).
Euler equation:

Ṡ = [S, J(S)] ,

where
J(S) =

∑
Jij,klSklEij

is a linear functional and Jij,kl � set of constants. From viewpoint of mechanics J is a
multidimensional analogue of the inverse inertia tensor.

Hamiltonian:

H =
1

2
tr(SJ(S))

Poisson brackets are given by Poisson-Lie structure on gl∗N :

{Sij , Skl} = δilSkj − δkjSil .



Equations of motion are represented in the Lax form with spectral parameter z:

L̇(z) = [L(z),M(z)] , ∀z L̇(z) = {H,L(z)} =
∑
ij

Eij{H,Lij(z)}

Then Hk(z) = tr(Lk(z)) � are generating functions for integrals of motion:

tr(Lk(z)) =
∑
m

(z − z0)mHk,m ,
d

dt
Hk,m = 0 ∀k,m

De�ne {L1(z) , L2(w)} =
∑
ijkl

Eij ⊗ Ekl {Lij(z), Lkl(w)}. If there exists r12 ∈ Mat⊗2 (classical

r-matrix) satisfying relation

{L1(z) , L2(w)} = [L1(z), r12(z, w)]− [L2(w), r21(w, z)] ,

r12(z, w) =
∑
ijkl

rij,kl(z, w)Eij ⊗ Ekl , r21(w, z) =
∑
ijkl

rij,kl(w, z)Ekl ⊗ Eij ,

where L1(z) = L(z)⊗ 1, L2(w) = 1⊗ L(w), then {Hi,m, Hj,n} = 0.



Jacobi identity in Mat⊗3 for the Poisson brackets

{{L1(z1), L2(z2)}L3(z3)}+ cycl. = 0 , L3(z3) = 1N ⊗ 1N ⊗ L(z3)

is ful�lled if the classical Yang-Baxter equation holds true

[r12, r13] + [r12, r23] + [r13, r23] = 0 , rij = rij(zi − zj) , r12(z) =
∑
ijkl

rij,kl(z)Eij ⊗ Ekl ⊗ 1N ,

r23(z) =
∑
ijkl

rij,kl(z) 1N ⊗ Eij ⊗ Ekl , r13(z) =
∑
ijkl

rij,kl(z)Eij ⊗ 1N ⊗ Ekl .

In quantum case it is generalized to the quantum Yang-Baxter equation for quantum R-matrix:

R~
12 R

~
13 R

~
23 = R~

23 R
~
13 R

~
12 , R~

ij = R~
ij(zi − zj)

In the quasi-classical limit

R~
12 = 1⊗ 1 + ~ r12 +O(~2)

the classical YB equation is reproduced.



The Calogero-Moser model:

H2 =

N∑
i=1

p2
i

2
− ν2

N∑
i<j

℘(qi − qj) , ℘(x)→ 1

sin2(x)
→ 1

x2

where ν � coupling constant, ℘(q) � Weierstrass ℘-function. Its equations of motion are written in
the Lax form with

L(z) =



p1 νφ(z, q1 − q2) νφ(z, q1 − q3) . . . νφ(z, q1 − qN )

νφ(z, q2 − q1) p2 νφ(z, q2 − q3) . . . νφ(z, q2 − qN )

...
...

...
. . .

...
νφ(z, qN − q1) νφ(z, qN − q2) νφ(z, qN − q3) . . . pN


where z � spectral parameter (Krichever 1980). It is a local coordinate on (elliptic) curve.



Lij(z) = δijpi + ν(1− δij)φ(z, qij) , qij = qi − qj , φ(z, q) =
ϑ′(0)ϑ(q + z)

ϑ(q)ϑ(z)
,

Mij(z) = νdiδij + ν(1− δij)f(z, qij) , di = −
N∑
k 6=i

f(0, qik) , f(z, q) = ∂qφ(z, q) .

Here φ(z, q) � elliptic Kronecker function:

φ(η, z) =
ϑ′(0)ϑ(η + z)

ϑ(η)ϑ(z)
→ coth(η) + coth(z) → 1/η + 1/z

It satis�es the genus 1 Fay identity (addition formula):

φ(~, q1 − q2)φ(η, q2 − q3) = φ(~− η, q1 − q2)φ(η, q1 − q3) + φ(η − ~, q2 − q3)φ(~, q1 − q3)

Degeneration (~ = η = z):

φ(z, qab)f(z, qbc)− f(z, qab)φ(z, qbc) = φ(z, qac)(℘(qab)− ℘(qbc)) , qab = qa − qb

f(z, q) = ∂qφ(z, q) , f(0, q) = −℘(q) + const

These identities are widely used in integrable systems (Lax equations, R-matrix structures,...)



Quantum Yang-Baxter equation:

R~
12(q1, q2)R~

13(q1, q3)R~
23(q2, q3) = R~

23(q2, q3)R~
13(q1, q3)R~

12(q1, q2)

Below we use notations R~
12(q1, q2) = R~

12(q1 − q2) ≡ R~
12(q12) ≡ R~

12

Associative Yang-Baxter equation::

R~
12(q1 − q2)Rη23(q2 − q3) = Rη13(q1 − q3)R~−η

12 (q1 − q2) +Rη−~
23 (q2 − q3)R~

13(q1 − q3)

S. Fomin, An. Kirillov M. Aguiar, A. Polishchuk
Example of common solution: rational Yang's R-matrix

RYang
12 (q1, q2) =

1⊗ 1

~
+

P12

q1 − q2
, P12 =

N∑
i,j=1

Eij ⊗ Eji ,

where P12 � matrix permutation operator: P12(a⊗ b) = b⊗ a for a, b ∈ CN .

...,trigonometric R-matrices (XXZ),..., elliptic Baxter-Belavin R-matrix (XYZ).
Skew-symmetric (R~

12(z) = −R−~
21 (−z)) and unitary (R~

12(z)R~
21(−z) ∼ 1⊗ 1) solution of AYBE is

also solution to QYB.



R-matrix is a matrix generalization of the Kronecker function φ
In the scalar case the QYB is an empty condition while the associative Yang-Baxter equation

R~
12(q12)Rη23(q23) = Rη13(q13)R~−η

12 (q12) +Rη−~
23 (q23)R~

13(q13)

turns into the addition formula (considered as a functional equation for φ)

φ(~, q12)φ(η, q23) = φ(~− η, q12)φ(η, q13) + φ(η − ~, q23)φ(~, q13) , qij = qi − qj

One more example. Scalar identity

(E1(q12) + E1(q23) + E1(q31))2 = ℘(q12) + ℘(q23) + ℘(q31) , E1(x) = ∂x log ϑ(x)

is generalized to (
r12(q12) + r23(q23) + r31(q31)

)2

= Id
(
℘(q12) + ℘(q23) + ℘(q31)

)
if R~

12(q) satis�es the associative Yang-Baxter equation and

R~
12(q) =

1

~
1⊗ 1 + r12(q) + ~m12(q) +O(~2) .



R-matrices satifying AYBE � matrix generalizations of elliptic functions

φ(~, qab)f(~, qbc)− f(~, qab)φ(~, qbc) = φ(~, qac)(℘(qab)− ℘(qbc)) , f(~, x) = ∂xφ(~, x)

R~
abF

~
bc − F ~

abR
~
bc = F 0

bcR
~
ac −R~

acF
0
ab , F ~

ab(x) = ∂xR
~
ab(x)

Local expansion near ~ = 0:

φ(~, q) = ~−1 + E1(q) + ~ (E2
1(q)− ℘(q))/2 +O(~2) , E1(q) = ϑ′(q)/ϑ(q)

The quasi-classical limit

R~
12(q) =

1

~
1⊗ 1 + r12(q) + ~m12(q) +O(~2) .

where r12(q) � classical r-matrix and

m12(q) =
1

2

(
r2
12(q)− 1⊗ 1℘(q)

)
.

R~
12(q) � matrix analogue for the function φ(~, q), and r12(q) � matrix analogue for the function

E1(q) (E1(x) = ∂x log ϑ(x)).



Integrable Euler-Arnold tops

Dynamical variables:

S =

N∑
i,j=1

SijEij ∈ Mat(N) ,

where Eij � is the standard basis in Mat(N,C).
Euler equation:

Ṡ = [S, J(S)] ,

where
J(S) =

∑
Jij,klSklEij

is a linear functional and Jij,kl � set of constants. From viewpoint of mechanics J is a
multidimensional analogue of the inverse inertia tensor.

Hamiltonian:

H =
1

2
tr(SJ(S))

Poisson brackets are given by Poisson-Lie structure on gl∗N :

{Sij , Skl} = δilSkj − δkjSil .



Let R be a solution to the associative Yang-Baxter equation with the properties of unitarity,
skew-symmetry and the quasi-classical expansion

R~
12(z) =

1

~
1N ⊗ 1N + r12(z) + ~m12(z) +O(~2) .

Then the Lax equation

L̇(z, S) = [L(z, S),M(z, S)]

holds true identically in z for the Lax pair:

L(z, S) = tr2(r12(z)S2) , M(z, S) = tr2(m12(z)S2) , S2 = 1⊗ S

r12(z) =
∑
ijkl

rij,kl(z)Eij ⊗ Ekl tr2(r12(z)S2) =
∑
ijkl

rij,kl(z)Eij tr(EklS) =
∑
ijkl

rij,kl(z)Slk Eij ,

The Lax equation itself is equivalent to the Euler equation with

J(S) = tr2(m12(0)S2) .

We obtained a family of classical integrable tops using data of a solution to AYBE.



Example: 7-vertex trigonometric R-matrix

R~(z) =


coth(z) + coth(~) 0 0 0

0 sinh−1(~) sinh−1(z) 0

0 sinh−1(z) sinh−1(~) 0

−4 e−2Λ sinh(z + ~) 0 0 coth(z) + coth(~)


provides

J(S) =
1

6

 2S11 − S22 0

−24 e−2ΛS12 −S11 + 2S22

 , S =

 S11 S12

S21 S22

 .



Underlying identities. Degenerations in �Planck constants� ~ and η. Beginning from AYBE

R~
12R

η
23 = Rη13R

~−η
12 +Rη−~

23 R~
13 , R~

ab = Rab(za − zb)

in the limit η → ~ it gives
R~

12R
~
23 = R~

13r12 + r23R
~
13 − ∂~R~

13 .

By changing indices 1↔ 3 (i.e. conjugating equation by P13 and renaming z1 ↔ z3), changing also
~→ −~ and then using skew-symmetry R~

ab(z) = −R−~
ba (−z) it transforms into

R~
23R

~
12 = R~

13r23 + r12R
~
13 − ∂~R~

13 .

Subtracting these equations gives

[R~
12, R

~
23] = [R~

13, r12]− [R~
13, r23] .

Taking the limit ~→ 0 and using the classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0 , rab = rab(za − zb)

results
[r12,m13 +m23] = [r23,m12 +m13] , mab = mab(za − zb)



Underlying identities. Degenerations in spectral parameters z1, z2, z3.

Write down degenerated AYBE with z3 = 0:

[Rη13(z1), r12(z1 − z2)] = [Rη12(z1 − z2), Rη23(z2)] + [Rη13(z1), r23(z2)]

and consider the limit z2 → 0 (together with renaming z1 := z). The simple pole at z2 = 0 cancel
out due to [Rη12(z), P23] + [Rη13(z), P23] = 0 by de�nition of permutation operator. Finally,

[Rη13(z), r12(z)] = [Rη12(z), R
η,(0)
23 ] + [Rη13(z), r

(0)
23 ]− [∂zR

η
12(z), P23]

Here we use expansions near ~ = 0 (the classical limit) and near z = 0:

R~
12(z) =

1

~
1N ⊗ 1N + r12(z) + ~m12(z) +O(~2)

R~
12(z) =

1

z
P12 +R

~,(0)
12 + zR

~,(1)
12 +O(z2) ,

R
~,(0)
12 =

1

~
1N ⊗ 1N + r

(0)
12 +O(~) , r12(z) =

1

z
P12 + r

(0)
12 +O(z) .

P12 =
∑
i,j Eij ⊗ Eji � permutation operator: P12(u⊗ v) = v ⊗ u for u, v ∈ CN .



Relativistic tops

The Lax equation
L̇(z, S) = [L(z, S),M(z, S)]

is equivalent to the Euler's equations
Ṡ = [S, J(S)]

for the Lax pair

Lη(z, S) = tr2(Rη12(z)S2) , Mη(z, S) = −tr2(r12(z)S2)

with the following inverse inertia tensor:

Jη(S) = tr2

(
(R

η,(0)
12 − r(0)

12 )S2

)
,

where the coe�cients of the expansions near z = 0 are used.

R~
12(z) =

1

z
P12 +R

~,(0)
12 + zR

~,(1)
12 +O(z2) ,

R
~,(0)
12 =

1

~
1N ⊗ 1N + r

(0)
12 +O(~) , r12(z) =

1

z
P12 + r

(0)
12 +O(z) .



Hamiltonian structure for the relativistic top: Sklyanin type algebras
The quadratic r-matrix structure

{Lη1(z, S), Lη2(w, S)} = [Lη1(z, S)Lη2(w, S), r12(z − w)] ,

leads to the following quadratic Poisson brackets

{S1, S2} = [S1S2, r
(0)
12 ] + [Eη(S)1S2, P12] , Eη(S)1 = tr3(R

η,(0)
13 S3) .

for the de�ned above Lax matrices. Being written in components it takes the form:

{Sij , Skl} = (EηilSkj − E
η
kjSil) +

N∑
a,b=1

(SiaSkbr
(0)
aj,bl − r

(0)
ia,kbSajSbl) ,

where

Eη(S)ij =
N∑

m,n=1

R
η,(0)
ij,mnSnm .

In the elliptic case these are the brackets for the GLN version of Sklyanin algebra. In the
relativistic case the Hamiltonian is given by

Hrel = tr(S) .



Integrable chains. Consider a set of Lη(z, Sa), a = 1, ..., n attached to n sites. Then the
monodromy matrix

T (z) = L(z, S1)L(z, S2)...L(z, Sn)

also satis�es
{T1(z), T2(w)} = [T1(z)T2(w), r12(z − w)] ,

and tr(T (z)) is a generating function of commuting Hamiltonians.
In the special case

Sa = ξa ⊗ ψa , (ψa, ξa) = c = const ,

where ξa are N -dimensional column-vectors, and ψa are N -dimensional row-vectors, and (ψa, ξa)
is their scalar product. Then the Lax pair

Lk(z) = L(z, Sk) = tr2

(
Rη12(z)Sk2

)
, Mk(z) = −tr2

(
r12(z)Sk+1,k

2

)
, Sk+1,k =

ξk+1 ⊗ ψk

(ψk, ξk+1)

satis�es the discrete Zakharov-Shabat equation: L̇k(z)− Lk(z)Mk(z) +Mk−1(z)Lk(z) = 0 . It
holds true identically in spectral parameter z and provides the following equations of motion:

Ṡk = E0(Sk,k−1)Sk − SkE0(Sk+1,k) + Sk,k−1Eη(Sk)− Eη(Sk)Sk+1,k

with Eη(S) = tr3(R
η,(0)
13 S3).



Limiting cases of integrable chains: Gaudin model.
Consider the inhomogeneous chain

T (z) = L(z − z1, S
1)L(z − z2, S

2)...L(z − zn, Sn)

and the non-relativistic limit η → 0. Then one gets the classical Gaudin model. It is described by
the Lax matrix

LG(z) =
n∑
a=1

tr2

(
r12(z − za)Sa2

)
.

The Poisson brackets become Poisson-Lie linear brackets on gl∗×nN : {Sa1 , Sb2} = δab[P12, S
a
1 ] .. The

set of Hamiltonians:

HG

a =
n∑

c:c 6=a

tr1,2

(
r12(za − zb)Sa1Sb2

)
, HG

0 =

n∑
b6=c

tr1,2

(
m12(zb − zc)Sb1Sc2

)
,

where m12 is from R~
12(z) = ~−11N ⊗ 1N + r12(z) + ~m12(z) +O(~2). The Poisson commutativity

{HG

a , H
G

b } = 0

is due to the classical Yang-Baxter equation, while

{HG

a , H
G

0 } = 0

comes from identity (derived from AYBE)

[r12,m13 +m23] = [r23,m12 +m13] , mab = mab(za − zb) .



Quantum Gaudin model.

Quantization of the classical Hamiltonians of Hamiltonians:

HG

a =
n∑

c:c 6=a

tr1,2

(
r12(za − zb)Sa1Sb2

)
,

HG

0 =

n∑
b 6=c

tr1,2

(
m12(zb − zc)Sb1Sc2

)
.

in the fundamental representation of glN Lie algebra is given by operators

ĤG

a =

n∑
c:c6=a

rab(za − zb) ∈ Mat(N,C)⊗nN ,

and

ĤG

0 =

n∑
b 6=c

mbc(zb − zc) ∈ Mat(N,C)⊗nN .

Commutativity
[ĤG

a , Ĥ
G

b ] = 0 , [ĤG

a , Ĥ
G

0 ] = 0

again follows from the above mentioned identities.



Heat equation and KZ equations. The Kronecker function φ(z, u|τ) satis�es the heat equation

2πı∂τφ(z, u|τ) = ∂z∂uφ(z, u|τ) ,

which follows from the heat equation for theta-function 4πı∂τϑ(z|τ) = ∂2
zϑ(z|τ) .

Suppose R-matrix solving AYBE depends on some parameter τ and satis�es also the heat equation

2πı∂τR
~
12(z) = ∂z∂~R

~
12(z) .

This is true for the properly normalized Baxter-Belavin elliptic R-matrix (and certain
degenerations). Then in the limit ~→ 0 we get

2πı∂τr12(z) = ∂zm12(z) .

This allows to de�ne commuting Knizhnik-Zamolodchikov connections:

∇a = ∂za + ĤG

a = ∂za +
n∑

c:c6=a

rab(za − zb) ,

∇τ = 2πı∂τ + ĤG

0 = 2πı∂τ +

n∑
b 6=c

mbc(zb − zc)

and
[∇a,∇b] = 0 , [∇a,∇τ ] = 0 .



Limiting cases of integrable chains: 1+1 Landau-Lifshitz model.
Return back to the chain

L̇k(z)− Lk(z)Mk(z) +Mk−1(z)Lk(z) = 0 .

Ṡk = E0(Sk,k−1)Sk − SkE0(Sk+1,k) + Sk,k−1Eη(Sk)− Eη(Sk)Sk+1,k

with Eη(S) = tr3(R
η,(0)
13 S3).

In the continuous limit we get higher rank Landau-Lifshitz equation. We again deal with the rank
one case (below x is a coordinate on a circle)

S(x) = ξ(x)⊗ η(x) ∈ Mat(N,C) , (η(x), ξ(x)) = c = const .

Then the equations of motion take the form

∂tS =
1

c
[S, ∂2

xS] +
2c

N
[S, J(S)]− 2[S,E0(∂xS)] , J(S) = tr2(m12(0)S2) .

Consider N = 2 and elliptic case. Then E0 = 0, and we come to the standard XYZ
Landau-Lifshitz magnet, which integrability was proved by Sklyanin.



In the general (not elliptic and N 6= 2) case the obtained equation has the Zakharov-Shabat (or
zero-curvature or Lax) representation

∂tU(z)− ∂xV (z) + [U(z), V (z)] = 0 ,

where U(z), V (z) is a pair of matrix-valued functions of the variables t, x depending also on the
spectral parameter z:

U(z) = L(S, z) =
1

N
tr2

(
r12(z)S2

)
, V (z) = V1(z) + V2(z) ,

V1(z) = −c∂zL(S, z) + L(SE0(S), z) + L(E0(S)S, z) , V2(z) = −cL(T, z)

and T = −c−2[S, ∂xS] is a solution of equation −∂xS = [S, T ] for the case S2 = cS.
Hamiltonian description. The Poisson structure is given by

{Sij(x), Skl(y)} = (Skj(x)δil − Sil(x)δkj)δ(x− y) or {S1(x), S2(y)} = [P12, S1(x)]δ(x− y) .

The equations of motion are reproduced as ∂tS(x) = {H,S(x)} the following Hamiltonian:

HLL =

∮
dy
( c
N

tr
(
S J(S)

)
− 1

2c
tr
(
∂yS ∂yS

)
+ tr

(
∂yS E

0(S)
))

, S = S(y) .



To summarize, using construction of integrable tops as building blocks we obtained families of

I (classical) spin chains

I Sklyanin algebras

I Gaudin models

I KZ equations

I 1+1 Landau-Lifshitz models



Model of interacting tops.

It can be viewed as anisotropic version of the spin Calogero model: N interacting GLM tops, i.e.
Sij → Sij ∈ MatM and

Htops =
N∑
i=1

p2
i

2
+

N∑
i=1

Htop(Sii) +
1

2

N∑
i,j: i 6=j

V(Sii,Sjj , qi − qj) .

Htops =

N∑
i=1

p2
i

2
− 1

2

N∑
i=1

∑
α 6=0

SiiαS
ii
−α℘(ωα)− 1

2M

N∑
i 6=j

∑
α,β

κ2
α,βS

jj
β S

ii
−β℘(ωα +

qi − qj
M

) .

N = 1 (a single block) case is the single Euler-Arnold top
M = 1 (each block is 1× 1) case is the (spin) Calogero-Moser model

L(z) =


L11(z) L12(z) . . . L1N (z)

L21(z) L22(z) . . . L2N (z)
...

...
. . .

...

LN1(z) LN2(z) . . . LNN (z)




in one column
N blocks

of size M ×M



Interacting tops through R-matrices solving AYBE.

L(z) =

N∑
i,j=1

Eij ⊗ Lij(z) , Lij(z) ∈ MatM L(z) ∈ MatNM ,

Lij(z) = δij
(
pi1M + tr2(S ii2 R

z,(0)
12 P12)

)
+ (1− δij) tr2(S ij2 Rz12(qij)P12) , qij = qi − qj

and similarly for M ij(z) ∈ MatM

M ij(z) = δij tr2(S ii2 R
z,(1)
12 P12) + (1− δij) tr2(S ij2 F z12(qij)P12) ,

where
F z12(u) = ∂uR

z
12(u).

The Lax equations provide equations of motion, which comes from the Hamiltonian

Htops =
N∑
i=1

p2
i

2
+

1

2

N∑
i=1

tr12

(
m12(0)Sii1 Sii2

)
+

M∑
i<j

tr12

(
F 0

12(qij)Sii1 Sjj2

)
.

{Sijab,S
kl
cd} = Skjcb δ

il δad − Silad δkj δbc
or

{Sij1 ,S
kl
2 } = P12 Skj1 δil − Sil1 P12 δ

kj .



Equations of motion:

tr
(
Sii
)

= const , ∀i

Ṡii = [Sii, tr2(m12(0)Sii2 )] +
N∑

k:k 6=i

[Sii, tr2(F 0
12(qik)Skk2 )] ,

ṗi = −
N∑

k:k 6=i

tr12

(
∂qiF

0
12(qik)Sii1 Skk2

)
.

We will come back to this model at quantum level beginning with a di�erent construction.



Relativistic interacting tops.

L(z) =

M∑
i,j=1

Eij ⊗ Lij(z) ∈ Mat(NM,C) , Lij(z) ∈ Mat(N,C) .

Lij(z) =
∑
α

TαSijα ϕα(z, ωα + qij + η) , qij = qi − qj , ωα =
α1 + α2τ

N
,

By introducing

Jη, qij (Sij) =
∑
α

TαSijα
(
E1(ωα + qij + η)− E1(ωα + qij)

)
, E1(x) = ϑ′(x)/ϑ(x)

equations of motion take the form

Ṡij = SijJη(Sjj)− Jη(Sii)Sij +
M∑

k:k 6=j

SikJη, qkj (Skj)−
M∑

k:k 6=i

Jη, qik (Sik)Skj .

q̈i =
1

N
tr
(
Ṡii
)

=
1

N

M∑
k:k 6=i

tr
(
SikJη, qki(Ski)− Jη, qik (Sik)Ski

)
,

For M = 1 case these are equations of motion introduced by Krichever and Zabrodin.
For N = 1 one obtains relativistic top described by the classical Sklyanin algebra.



Part II: another application of AYBE � R-matrix valued Lax pairs.

Calogero-Moser model:

H2 =
N∑
i=1

p2
i

2
− ν2

N∑
i<j

℘(qi − qj) , ℘(x)→ 1

sin2(x)
→ 1

x2

where ν � coupling constant, ℘(q) � the Weierstrass ℘-function. Equations of motion are written
in the Lax form with the following Lax matrix:

L(z) =



p1 νφ(z, q1 − q2) νφ(z, q1 − q3) . . . νφ(z, q1 − qN )

νφ(z, q2 − q1) p2 νφ(z, q2 − q3) . . . νφ(z, q2 − qN )

...
...

...
. . .

...
νφ(z, qN − q1) νφ(z, qN − q2) νφ(z, qN − q3) . . . pN


where z � spectral parameter (I. Krichever 1980).



Let us replace the functions φ in the Lax matrix by R-matrices (with the Planck constant ~→ z)

L =
N∑

a,b=1

Eab ⊗ Lab , Lab = δabpa 1⊗ ...1 + ν(1− δab)Rzab , Rzab = Rzab(qa − qb)

or

L(z) =


p11⊗Nn νRz12(q1 − q2) νRz13(q1 − q3) . . . νRz1N (q1 − qN )

νRz21(q2 − q1) p21⊗Nn νRz23(q2 − q3) . . . νRz2N (q2 − qN )
...

...
...

. . .
...

νRzN1(qN − q1) νRzN2(qN − q2) νRzN3(qN − q3) . . . pn1⊗Nn


and

Mab(z) = νδabda + ν(1− δab)F zab , F zab = ∂qaR
z
ab(qa − qb) ,

where da = −
N∑

c: c6=a
F 0
ac , F 0

ac = F zac |z=0 .

One can verify that the order of R-matrices is incorrect. It is not in the agreement with the

identity R~
abF

~
bc − F ~

abR
~
bc = F 0

bcR
~
ac −R~

acF
0
ab. Instead, we obtain R

~
acF

0
bc − F 0

abR
~
ac.



Let us add additional term to M -matrix:

M(z)→M(z) + 1N ⊗F 0 , F 0 =

N∑
b,c: b>c

F 0
bc =

N∑
b,c: b>c

∂qbrbc(qb − qc) ∈ Mat⊗NM

In the scalar (Krichever's) case it does not e�ect the Lax equations. This term exactly
changes the order of R and F 0

[Rzac,F 0] +
∑
b 6=a,c

RzabF
z
bc − F zabRzbc =

∑
b 6=c

RzacF
0
bc −

∑
b 6=a

F 0
abR

z
ac , ∀ a 6= c.

The the R-matrix identities work as it was expected.
The term F 0 � is a matrix analogue of the Calogero-Moser potential

F 0 =

N∑
b,c: b>c

F 0
bc , F 0

bc = ∂qbrbc(qb − qc) .

In fact, this potential describes quantum version for interacting tops:

Htops =

N∑
i=1

p2
i

2
+

1

2

N∑
i=1

tr12

(
m12(0)Sii1 Sii2

)
+

M∑
i>j

tr12

(
F 0

12(qij)Sii1 Sjj2

)
.



We obtained the Lax equation in the form:

L̇(z) = {H,L(z)} = [L(z),M(z) + 1N ⊗F 0]

Rewriting it as
{H,L(z)}+ [1N ⊗F 0,L(z] = [L(z),M(z)]

we come to half-quantum Lax equation.

Many-body degrees of freedom (pi and qj) are classical, while the spin type variables are already
quantum (in the fundamental representation).



Quantum long-range spin chains

Equilibrium position in the Calogero-Moser system: pj = 0, and positions of particles qj are �xed
to be equidistant points on a circle qj = xj = j/N .
Then {H,L(z)} = 0 and

L̇(z) = {H,L(z)} = 0 = [L(z),M(z) + 1N ⊗F 0]

or
[1N ⊗F 0,L(z)] = [L(z),M(z)]

where

[1N ⊗F 0,L(z)] =

N∑
i,j=1

Eij [F 0,Lij ]

This is a quantum Lax equation with the quantum Hamiltonian 1⊗F 0!

In some simple case F0 � is the Hamiltonian of the Haldane-Shastry long-range chain:

F 0 =

N∑
i<j

Pij

sin2 π(i−j)
N

, Pij =
1

2

3∑
a=0

i
σa

j
σa − spin exchange operator .



Another simple example leads to the Inozemtsev chain F 0 =
N∑
i<j

Pij℘
(
π(i−j)
N

)
.

For 8-vertex Baxter's R-matrix

R~
12(q) =

∑
α

σα ⊗ σα ϕα(q, ωα + ~)

we get new anisotropic Hamiltonian extending the previous examples:

F0 → Ĥ =
N∑
i<j

3∑
a=0

i
σa

j
σa Ja(xi − xj) , xj = j/N

=
∑
i<j

(
i
σ0

j
σ0 E

′
1(xij) +

3∑
α=1

i
σα

j
σα ϕα(xij)(E1(xij + ωα)− E1(xij)− E1(ωα))

)
,

Possible solutions of the associative Yang-Baxter equations provide a wide class of new quantum integrable

long-range spin chains.



Is it integrable?

How to �nd higher Hamiltonians?

All the �ows are described by the Lax equations

∂tkL(z) ≡ {Hk, L(z)} = [L(z),M (k)(z)] ,

Third �ow in Calogero-Moser model
The third Hamiltonian

H3 =

N∑
i=1

p3
i

3
− ν2

N∑
i 6=j

pi ℘(qi − qj)

provides equations of motion 
∂t3qi = p2

i − ν2
∑
k 6=i

℘(qi − qk) ,

∂t3pi = ν2
∑
k 6=i

(pi + pk)℘′(qi − qk) .



M -matrix is of the form:

M
(3)
ij (z) = −δij ν

∑
k 6=i

(pi + pk)f(0, qik)+

+(1− δij)
(
ν(pi + pj)f(z, qij) + ν2

∑
k 6=i,j

(φ(z, qik)f(z, qkj)− φ(z, qij)f(0, qkj))
)

R-matrix-valued generalization of the M -matrix for the third �ow:

M(3)
ij (z) = −δij ν

∑
k 6=i

(pi + pk)F 0
ik(qik)+

+(1− δij)
(
ν(pi + pj)F

z
ij(qij) + ν2

∑
k 6=i,j

(Rzik(qik)F zkj(qkj)−Rzij(qij)F 0
kj(qkj))

)
+

+δij
(
ν2
∑
b,c

′
[F 0
bc(qbc), ric(qic)] + ν

∑
b,c

′
pbF

0
bc(qbc)−

ν2

3

∑
a,b,c

′
[F 0
ab(qab), rcb(qcb)]

)



The analogue of F0-term gives

Hchain
3 =

∑
a,b,c

′
[F 0
ab(xab), rcb(xcb)] , xj = j/N

It was originally veri�ed numerically that

[Hchain
2 ,Hchain

3 ] = 0 .

Now we know several ways to derive the Hamiltonians and prove commutativity. One of them was
presented yesterday by M. Matushko through Dunkl operators.
Another way � explicit construction of q-deformed commuting set of operators.



We started from the classical many-body system and now are discussing a quantum spin chain.
How it happened?

{H,L}+ [νF0,L(z)] = [L(z),M(z)] ,

whereM does not include the F0 term. In this respect the R-matrix-valued Lax pair is
�half-quantum�: the spin variables are quantized in the fundamental representation, while the
positions and momenta of particles remain classical. The F0 term in this treatment is the
(anisotropic) spin exchange operator.
In the equilibrium position {H,L} = 0 we get quantum Lax equation.
The quantities tr(Lk) are the classical (Calogero-Moser) Hamiltonians only.

The F0-term describes the quantum model of interacting tops (spins).



N interacting glM tops

Htops =
N∑
i=1

p2
i

2
+

N∑
i=1

Htop(Sii) +
1

2

N∑
i,j: i 6=j

V(Sii,Sjj , qi − qj) .

Htops =
N∑
i=1

p2
i

2
− 1

2

N∑
i=1

∑
α 6=0

SiiαS
ii
−α℘(ωα)− 1

2M

N∑
i 6=j

∑
α,β

κ2
α,βS

jj
β S

ii
−β℘(ωα +

qi − qj
M

) .

N = 1 case � single Euler-Arnold top
M = 1 case � the Calogero-Moser model

Under quantization the potential 1
2

N∑
i,j: i 6=j

V(Sii,Sjj , qi − qj) turns into F0, which we added to

M(z) to have appropriate order of R-matrices:

Ĥtops =

N∑
i=1

p̂2
i

2
+

N∑
i=1

Ĥtop(Ŝii) + F0 .



One more origin of F0-term � elliptic Knizhnik-Zamolodchikov equations:
Consider the glN elliptic KZ equations for N punctures on elliptic curve with moduli τ :

∇iψ = 0 , ∇i = ∂i + ν
∑
j:j 6=i

rij(zi − zj) ,

for i = 1, ..., N and

∇τψ = 0 , ∇τ = 2πı∂τ +
ν

2

∑
j 6=k

mjk(zj − zk) ,

where rij and mij are the coe�cients of the expansion of R-matrix. Commutativity [∇i,∇j ] = 0
follows from the classical Yang-Baxter equation, while [∇i,∇τ ] = 0 follows from AYBE and the
heat equation (2πı∂τR

~
12(z) = ∂z∂~R

~
12(z)):

2πı∂τrab = ∂zamab , [rab,mbc +mac] + [rac,mab +mbc] = 0 .

Then ψ satis�es also non-stationary Schr�odinger equation(
2πıNν∂τ +

1

2
∆

)
ψ =

(
−νF0 − 1

2
Nν2

∑
j

mjj + ν2N2 Id
∑
i<j

℘(zi − zj)

)
ψ ,

where ∆ =
∑
i

∂2
i and mjj = mjj(0) are scalar operators depending on τ .



Relativistic models and the Uglov's type q-deformation of long-range spin chains.

Introduce the operators Dk (matrix generalization of the scalar operators acting in End(H)):

Dk =
∑

1≤i1<...<ik≤N

 N∏
j = 1

j 6= i1...ik−1

φ(zj − zi1 , ~) φ(zj − zi2 , ~) · · · φ(zj − zik , ~)

×

×


←−−
i1−1∏
j1=1

R̄j1i1

←−−−−−
i2−1∏
j2 = 1
j2 6= i1

R̄j2i2 . . .

←−−−−−−−−−
ik−1∏
jk = 1

jk 6= i1...ik−1

R̄jkik

×

×e−η∂zi1 · · · e−η∂zik ×


−−−−−−−−−→

ik−1∏
jk=1

jk 6= i1...ik−1

R̄ikjk

−−−−−−−−−−−→
ik−1−1∏
jk−1 =1

jk−1 6= i1...ik−2

R̄ik−1jk−1 . . .

−−→
i1−1∏
j1=1

R̄i1j1

 ,

where k = 1, ..., N and R̄ij = R̄~
ij(zi − zj). For a wide class of R-matrices these operators commute

[Di,Dj ] = 0 .



In the scalar case (R̄ij = 1) these spin operators coincide with the Macdonald-Ruijsenaars
operators:

Dk =
∑
|I|=k

∏
i∈I
j /∈I

φ(~, zj − zi)
∏
i∈I

e−η∂zi , k = 1, . . . , N. (1)

At classical level these are Hamiltonians of relativistic interacting tops on GLNM Lie group. By
introducing

Jη, qij (Sij) =
∑
α

TαSijα
(
E1(ωα + qij + η)− E1(ωα + qij)

)
, E1(x) = ϑ′(x)/ϑ(x)

equations of motion take the form

Ṡij = SijJη(Sjj)− Jη(Sii)Sij +
N∑

k:k 6=j

SikJη, qkj (Skj)−
N∑

k:k 6=i

Jη, qik (Sik)Skj .

q̈i =
1

N
tr
(
Ṡii
)

=
1

N

N∑
k:k 6=i

tr
(
SikJη, qki(Ski)− Jη, qik (Sik)Ski

)
,

For M = 1 case these are equations of motion for the spin Ruijsenaars-Schneider model
introduced by Krichever and Zabrodin.
For N = 1 one obtains relativistic top described by the classical Sklyanin algebra.



Return back to the associative Yang-Baxter equation, which can be viewed as quadratic algebra

rijrjk = rikrij + rjkrik for distinct i, j, k .

It was extended by An. Kirillov to B-type associative Yang-Baxter algebra, which includes
relations

rijyj = yirij + r̃ijyi + yj r̃ij .

with additional generators yi.

In our recent paper with M. Matushko and A. Mostovskii we showed that this algebra has
representation, where the generators yi become the boundary K-matrices solving the
re�ection equation

R−12(x1, x2)K~
1 (x1)R+

12(x1, x2)K~
2 (x2) = K~

2 (x2)R+
12(x1, x2)K~

1 (x1)R−12(x1, x2) ,

where R−12(x1, x2) = R~
12(x1 − x2), R+

12(x1, x2) = R~
12(x1 + x2). The K-matrices play the role of

the boundary conditions in quantum integrable systems.



Namely,

Rw+z
ij (qi − qj)K̃w

j (qj) = K̃w
i (qi)R

z−w
ij (qi − qj) + R̃w−zij (qi + qj)K̃

z
i (qi) + K̃−zj (qj)R̃

w+z
ij (qi + qj) .

For example, for the Baxter's 8-vertex R-matrix we have

K̃~(z) =

3∑
k=0

νke
2πı(z+~+ωk)∂τωkφ(z + ωk, ~ + ωk)σ4−k ,

This allows to apply construction of R-matrix valued pairs to BCn type Calogero-Inozemtsev
system:

H =
1

2

n∑
k=1

p2
k − g2

n∑
i<j

(
℘(qi − qj) + ℘(qi + qj)

)
− 1

2

3∑
a=0

n∑
k=1

ν2
a℘(qk + ωa) ,

where ωγ are half-periods, and the �ve arbitrary constants are g, ν0, ν1, ν2, ν3 ∈ C.



The Takasaki's 2n× 2n Lax pair has a natural block-matrix structure:

L(z) =

 L11(z) L12(z)

L21(z) L22(z)

 ,

L11
ij (z) = δijpi + g(1− δij)φ(z, qij) ,

L12
ij (z) = δijv(z, qi) + g(1− δij)φ(z, q+

ij) ,

L21
ij (z) = −δijv(−z, qi)− g(1− δij)φ(−z, q+

ij) ,

L22
ij (z) = −δijpi − g(1− δij)φ(−z, qij)

The function v(z, qi)

v(z, u) ≡ v(z, u|ν) =

3∑
a=0

νa exp(4πız∂τωa)φ(2z, u+ ωa)

is generalized to K-matrix, while φ-function are again replaced with R-matrices.
In this way one �nds BCn analogue for F0-term is

H = g

n∑
k<l

(
F 0
kl(qk − ql) + F̃ 0

kl(qk + ql)
)

+
1

2

n∑
k=1

Ỹ 0
k (qk) , Ỹ 0(x) = ∂xK

~(x)
∣∣∣
~=0

which now describes a new family of integrable long-range spin chains with boundaries.



Thank you!


