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Plan of the talk:

e Integrable systems and R-matrices

e Associative Yang-Baxter equation

e Integrable tops, spin chains, Sklyanin algebras, Gaudin models, etc.

e Model of interacting tops

e R-matrix valued Lax pairs and its relation to quantum interacting tops
e Long-range spin chains

e BC-version of associative Yang-Baxter equation and K-matrices



Integrable systems in classical mechanics

Hamiltonian mechanics: Hamiltonian function H and Poisson brackets { , } provide equations of
motion f = {H, f}.

Many-body systems: N particles with positions ¢; € C and momenta p; € C and Hamiltonian

N
RS TR
i=1

1<J

Canonical Poisson structure:
{pi7Qj}:6ij, {pivpj}:{Qiaqj}:()v 7'7.7:1N
We need: N independent integrals of motion Hy(p,q) with the involution property

{H;,H;} =0.



Integrable Euler-Arnold tops

Dynamical variables:
N
S = Z SijEij € Mat(N),
ij=1
where E;; — is the standard basis in Mat(N, C).
Euler equation:

5=15,J(9)],

where
J(S) = Z Jij ki Sk Eij

is a linear functional and J;; x; — set of constants. From viewpoint of mechanics J is a
multidimensional analogue of the inverse inertia tensor.

Hamiltonian:

1
H= itr(SJ(S))
Poisson brackets are given by Poisson-Lie structure on gly:

{Sij, Sk} = 0:1Sk; — Ok Sit -



Equations of motion are represented in the Lax form with spectral parameter z:

L(z) = [L(2), M(2)], V= L(z)={H, L(2)}= ZEw{H, Lij(2)}

Then Hy(z) = tr(L*(2)) — are generating functions for integrals of motion:

(L5 = 3~ 20) Hem, e Him =0 Yk

Define {L1(2), La(w)} = 3 Ei; ® Exi {Li;(2), Lri(w)}. If there exists r12 € Mat®? (classical
ijhkl
r-matrix) satisfying relation

{L1(2) , L2(w)} = [L1(2), r12(2, w)] — [L2(w), 21 (w, 2)] ,

ri2(z, w) = an,kl(z7 w) Bij ® By, ro1(w, z) = Zn‘j,kl(w, 2) B @ By,
ijkl ijkl

where Li(z) = L(2) ® 1, La(w) = 1 ® L(w), then {H; m, Hjn} =0.



Jacobi identity in Mat®?® for the Poisson brackets
{{L1(21), L2(22)} Ls(z3)} + cycl. =0,  Ls(z3) = 1v ® In @ L(z3)

is fulfilled if the classical Yang-Baxter equation holds true

[ri2,713] + [r12, 723] + [r13,723] = 0, ri; = 71i5(zi — 25), 7ri2(z E rijki(2) Bij @ By @ 1N,
gkl
ro3(z E rij i (2)In @ Eij ® Ery,  r13(2 E rijk(2) Eij @ In @ Eg .
ijkl ijkl

In quantum case it is generalized to the quantum Yang-Baxter equation for quantum R-matrix:
A ph ph h ph ph h n
Ry Rys Ry3 = R2L3 Rf?, Ry, ) Rij = Rij (Zz - Zj)

In the quasi-classical limit

Rly =1®1+ hria +O(%)

the classical YB equation is reproduced.



The Calogero-Moser model:

N

1 1

i=1 1<j

where v — coupling constant, p(q) — Weierstrass g-function. Its equations of motion are written in
the Lax form with

p1 vp(z,q1 —q2)  vo(z,q1—q3) ... vé(z,q1 —qn)
vé(z,q2 — q1) P2 v(z,q2 —q3) .. vo(z,q2 —qn)
L(z) =
vé(z, q.N —q1) vo(z, q;v —q2) vé(z, q;v —q3) ... p.N

where z — spectral parameter (Krichever 1980). It is a local coordinate on (elliptic) curve.



9 (0)9
Lij(z) = 0iypi +v(1 = 6i5) #(2,4i5), @ij = —q;, ¢(z,q) = Y(O)a+2)

Ha)9(z)
N
Mij(2) = vdibis +v(1 = 655) f(2,4i5),  di=— Y f(0,q), f(2,9) = 0yd(2, ).
ki

Here ¢(z,q) — elliptic Kronecker function:

9 (0)9(n + 2)
I(n)d(z)

It satisfies the genus 1 Fay identity (addition formula):

d(h,q1 — q2)p(n, g2 — q3) = ¢(h—n,q1 — @2)d(n, 1 — q3) + ¢(n — iy g2 — q3)d(h, 1 — q3)

Degeneration (h =1 = 2):

o(n,z) = — coth(n) + coth(z) — 1/n+1/2

(2, qab) f (2, qve) — f(2,4ab)P(2, Gbc) = P(2, Gac) (9(qab) — 9(qbe)) ;  Gab = Ga — Gb

f(z,0) = 040(z,9),  f(0,q) = —p(q) + const
These identities are widely used in integrable systems (Lax equations, R-matrix structures,...)



Quantum Yang-Baxter equation:

Riz(q1, q2)Ris(q1, q3) R33(q2, 43) = Rs(q2, q3) Ris(q1, g3) Riz (a1, ¢2)
Below we use notations Ris(q1,q2) = Ris(q1 — q2) = Ris(q12) = R},

Associative Yang-Baxter equation::

Risz(q1 — a2)R3s(q2 — g3) = Ris(q1 — a3)R13 " (a1 — q2) + RY; "(q2 — g3) Ris(q1 — g3)

S. Fomin, An. Kirillov M. Aguiar, A. Polishchuk
Example of common solution: rational Yang’s R-matrix

N
an 1®1 P
RY3™(q1,q2) = o + %2, Py = E Ei; @ Ejq
n e =1

where Pj5 — matrix permutation operator: Pis(a ® b) = b® a for a,b € CV.

...,trigonometric R-matrices (XXZ),..., elliptic Baxter-Belavin R-matrix (XYZ).
Skew-symmetric (Rfy(z) = —R5/"(—2)) and unitary (Rf,(2)R5;(—z) ~ 1 ® 1) solution of AYBE is
also solution to QYB.



R-matrix is a matrix generalization of the Kronecker function ¢
In the scalar case the QYB is an empty condition while the associative Yang-Baxter equation

Riz(qi2) Ri5(q23) = Ris(qus) Ry "(q12) + Ris " (q23) Ri3(q13)

turns into the addition formula (considered as a functional equation for ¢)

d(h, q12)P(n, go3) = ¢(h — n, q12)d(n, q13) + d(n — I, q23)d(h, qu3) s qij = i — g5

One more example. Scalar identity
(Er(q12) + B1(q2s) + E1(gs1))” = p(q12) + p(q2s) + p(gs1),  Er(x) = 9x log ¥(x)
is generalized to
2
(Tw(qm) +723(q23) + 7“31((131)) = Id(@(m) + p(ge3) + @(qrﬂ))

if R, (q) satisfies the associative Yang-Baxter equation and

1
Ris(q) = Fleolt+ r12(q) + hmaa(q) + O(h?) .



R-matrices satifying AYBE — matrix generalizations of elliptic functions
®(h, qab) f (R qoc) = f (R, qab) SR, Goc) = G(R, Gac) (9(qar) — 9(qoe)) ,  f(h,x) = Dup(R, )
RiFy. — Fiy R = Fy.Ry. — Ry Fy,,  Fliy(x) = 0. Ry (x)
Local expansion near h = O:

d(h,q) = h™' + Ei(q) + h(Ef(q) — p(a))/2+ O(K*), Ei(q) =9'(q)/9(q)

The quasi-classical limit

1
Rls(q) = F1@1+712(g) + hmaz(q) + O(h?).

where 712(q) — classical r-matrix and

mi2(q) = % (Tf2(Q) -1®1 @(Q)) .

Rl (q) — matrix analogue for the function ¢(, q), and 712(q) — matrix analogue for the function
E1(q) (Ei(z) = 0z log¥(x)).



Integrable Euler-Arnold tops

Dynamical variables:
N
S = Z SijEij € Mat(N),
ij=1
where E;; — is the standard basis in Mat(N, C).
Euler equation:

5=15,J(9)],

where
J(S) = Z Jij ki Sk Eij

is a linear functional and J;; x; — set of constants. From viewpoint of mechanics J is a
multidimensional analogue of the inverse inertia tensor.

Hamiltonian:

1
H= itr(SJ(S))
Poisson brackets are given by Poisson-Lie structure on gly:

{Sij, Sk} = 0:1Sk; — Ok Sit -



Let R be a solution to the associative Yang-Baxter equation with the properties of unitarity,

skew-symmetry and the quasi-classical expansion
; 1
Rliy(2) = 2 In @ In + 112(2) + hmaz(2) + O(F) .

Then the Lax equation )
L(Z,S) = [L(sz)vM(sz)]

holds true identically in z for the Lax pair:
L(Z7 S) = tI‘2(7‘12(Z)52) 5 ]\[(Z, S) = tI'Q(’IILlQ(Z)Sz) 5 52 =1 [024] S

ri2(z E rij,k1(2) Bij @ Ery - tra(riz(z E rij.k1(2) Eijtr(EwS) = E i,k (
ijkl igkl ijkl

The Lax equation itself is equivalent to the Euler equation with
J(S) = tI'Q(Hle(O)SQ) .

We obtained a family of classical integrable tops using data of a solution to AYBE.

Slk Ezg 3



Example: 7-vertex trigonometric R-matrix

coth(z) + coth(h) 0 0 0
) 0 sinh™' (k) sinh™!(z) 0
0 sinh™'(z) sinh™*(h) 0

—4e ?Aginh(z + h) 0 0 coth(z) + coth(r)

provides

1 2511 — S22 0 S11 Si2
J(8) =5 o 8= :
—24e7 M85 —S11 + 2599 So1 Sao



Underlying identities. Degenerations in "Planck constants” & and 7. Beginning from AYBE

h pn _ pn ph-n n—h ph o
RisRy3 = RisRi; ' + Rys  Ris, Ry = Rap(za — 2b)

in the limit n — A it gives
RY3Rhs = Rlisria 4 rozRis — OnRY; .

By changing indices 1 <+ 3 (i.e. conjugating equation by Pi3 and renaming z1 <> z3), changing also
"(—z) it transforms into

h — —h and then using skew-symmetry Rl (z) = — R,
R33Rlly = Risras + r12Rls — OnRls .
Subtracting these equations gives
[R;L% Rgs] = [R;f& 2] — [R’fsy T3] .
Taking the limit 7 — 0 and using the classical Yang-Baxter equation
[ri2,713] + [r12, 23] + [r13,723]) = 0,  Tab = Tab(2a — 2b)

results
[ri2,m13 4+ mas] = [r2z, mi2 + mis], Mab = Mab(2a — 2p)



Underlying identities. Degenerations in spectral parameters z1, z2, 23.

Write down degenerated AYBE with z3 = 0:
[R{3(21), m12(21 — 22)] = [Ri5(21 — 22), R3s(22)] + [Ri5(21), m23(22)]

and consider the limit zo — 0 (together with renaming z; := z). The simple pole at z2 = 0 cancel
out due to [R]y(2), Pas] + [R}5(2), P23] = 0 by definition of permutation operator. Finally,

[RY3(2),m12(2)] = [Riy(2), RO ] + [RY5(2), 78] — [0 R}y (), Pas]

Here we use expansions near i = 0 (the classical limit) and near z = 0:

1
R’E(Z) = -1y ®1INn + 7‘12(2) + hmlz(z) + 0(52)

h
hooyo L 1,(0) By (1) 2
Ris(2) = p P2 + Ry + 2Ry +0(27),
1 1
Ry =3 Iv @1y +7)) +0(h),  ria(z) = - P2+ +0(2).

Py =37, Eij ® Ej; — permutation operator: Pr2(u® v) = v ®u for u,v € cM.



Relativistic tops

The Lax equation )
L(z,5) = [L(2,5), M(z, 5)]

is equivalent to the Euler’s equations

for the Lax pair

L'(z,8) = tra(R{3(2)S2),  M"(2,5) = —tr2(r12(2)S2)
with the following inverse inertia tensor:
J(8) = tra (R — 19)52)

where the coefficients of the expansions near z = 0 are used.

1

Ris(z) = - Pis+ RE(O) + ZR?,ZQ) +0(z?),
1 1
Ry =21y @Iv+7§ +0(h),  ria(z) = - P +1{d +0(2).

h z



Hamiltonian structure for the relativistic top: Sklyanin type algebras
The quadratic r-matrix structure

{Li(z,9), L3(w, S)} = [L{(z, S)L3(w, S),r12(z — w)],
leads to the following quadratic Poisson brackets
{81,580} = [5152, i3] + [E"(8)182, Pra] . E"(S)r = tws (R S5).
for the defined above Lax matrices. Being written in components it takes the form:
N
{Sij, Sk} = (ESk; — EpSa) + > (SiaSker Dy — 1oy SaiSer)
a,b=1

where

2 : 7,(0)
Rzg,mns
m,n=1

In the elliptic case these are the brackets for the GLx version of Sklyanin algebra. In the
relativistic case the Hamiltonian is given by

H™ = tr(S).



Integrable chains. Consider a set of £L7(z,S5%), a = 1,...,n attached to n sites. Then the
monodromy matrix
T(z) = L(z,8")L(2,5%)..L(2,8™)
also satisfies
{T1(2), To(w)} = [T1(2)To(w), 12(z — w)],
and tr(7'(z)) is a generating function of commuting Hamiltonians.
In the special case
§¢ =& @y, (1%, €") = ¢ = const,
where £ are N-dimensional column-vectors, and ¢ are N-dimensional row-vectors, and (1%, £%)
is their scalar product. Then the Lax pair
k & n k k Et1k wre  ET @Yk
L*(2) = L(2, S%) = tra (312(2)52) . MM(2) = —tra (1"12(2)52 , ) S )
satisfies the discrete Zakharov-Shabat equation: L"(z) — L*(2)M"(2) + M* ' (2)LF(2) = 0. Tt
holds true identically in spectral parameter z and provides the following equations of motion:

Sk) _ EO(Sk,kfl)Sk _ SICEO(SkH»l,k) + Sk’k71E7](Sk) _ Er](Sk)Sk+l,k

with E”(S) = trs(R7, Ss).



Limiting cases of integrable chains: Gaudin model.
Consider the inhomogeneous chain

T(z) = L(z — 21, Sl)ﬁ(z — 22, 52)...£(z — 25, 8™)

and the non-relativistic limit 7 — 0. Then one gets the classical Gaudin model. It is described by
the Lax matrix

LG(z) = i tro (1"12(2’ - za)SS) .

The Poisson brackets become Poisson-Lie linear brackets on gl3*"™: {SY, SS} = 5“b[P12, S{].. The
set of Hamiltonians:

HE = Z tri,2 (rlg(za - zb)S‘ng> , H§ = Ztr1,2 (m12(2b - Zc)si’SS) )
cic#a bt
where my2 is from R}, (2) = B My ®1N + 712 (2) + Amaz(z) + O(FL2). The Poisson commutativity
{Hs Hy'} =0
is due to the classical Yang-Baxter equation, while
{Hs Hg'} =0
comes from identity (derived from AYBE)

[r12, m13 + mas] = [res, miz + mis], Maep = Mab(za — 2p) -



Quantum Gaudin model.
Quantization of the classical Hamiltonians of Hamiltonians:

HF = Z try 2 (T12(Za - Zb)S(IISg) )
cic#a

Hg = ZtrLg (mlg(zb — Zc)S]l?Sé:) .
b#c
in the fundamental representation of gl Lie algebra is given by operators

n

HS = Z Tab(2a — 25) € Mat(N,C)§",

cic#a
and "
HE = " mpe(zs — 2) € Mat(N,C)3" .
b#c
Commutativity A PPN
(A, HY) =0, [HS H]1=0

again follows from the above mentioned identities.



Heat equation and KZ equations. The Kronecker function ¢(z,u|7) satisfies the heat equation
2m0: d(z, u|T) = 0:0u¢(2, u|T),

which follows from the heat equation for theta-function 4710,9(z|7) = 029(z|T).
Suppose R-matrix solving AYBE depends on some parameter 7 and satisfies also the heat equation

2m0- Ry (2) = 0.0nR15(2) .

This is true for the properly normalized Baxter-Belavin elliptic R-matrix (and certain
degenerations). Then in the limit & — 0 we get

2m10-r12(2) = 0:ma2(2) .
This allows to define commuting Knizhnik-Zamolodchikov connections:

n
Vo= aza +ﬁ§ = 8za + Z 7"ab(Za - Zb),
cic#a

Vi, =2mor + f{é} = 2mo; + Zmbc(zb _ Zc)
b#c
and
[Va, Vo] =0,  [Va,V.]=0.



Limiting cases of integrable chains: 141 Landau-Lifshitz model.
Return back to the chain

LF(2) = LF(z)M" (2) + M* ' (2)LF(2) = 0.
Svk _ EO(Sk,k—l)Sk _ SkEO(Sk+1,k) + Sk,k—lEn(Sk) _ En(Sk)Sk+1,k

with E”(S) = trs(R7,” Ss).
In the continuous limit we get higher rank Landau-Lifshitz equation. We again deal with the rank
one case (below z is a coordinate on a circle)

S() = &(@) ®n(z) € Mat(N,C),  (n(x), () = ¢ = const.
Then the equations of motion take the form
1 2
S = [S.058] + T[S, J(9)] — 208, B @: )], J(S) = tra(m2(0)S2).

Consider N = 2 and elliptic case. Then E° = 0, and we come to the standard XYZ
Landau-Lifshitz magnet, which integrability was proved by Sklyanin.



In the general (not elliptic and N # 2) case the obtained equation has the Zakharov-Shabat (or
zero-curvature or Lax) representation

0 U(2) = 9:V(2) +[U(2), V(2)] = 0,

where U(z),V(z) is a pair of matrix-valued functions of the variables ¢,z depending also on the
spectral parameter z:

U(z) = L(S, 2) = %trg (ra(2)82) . V() =Va2) + Vala),

Vi(z) = —cd. L(S, z) + L(SE°(S), z) + L(E°(S)S, 2) Va(z) = —cL(T, 2)

and T = —c?[S, 0,5] is a solution of equation —8,5 = [S, T for the case S* = cS.
Hamiltonian description. The Poisson structure is given by

{Sii(2), Si(y)} = (Skj(®)ar — Su(w)éx;)0(x —y) or {Si(x),S2(y)} = [Pr2, S1(z)]6(z — y).

The equations of motion are reproduced as 9;5(x) = {H, S(z)} the following Hamiltonian:

Y = f@(% i (57(5)) — 5 tr (8,50,8) + 1 (9,5 B°(5))), 5 =50).



To summarize, using construction of integrable tops as building blocks we obtained families of
» (classical) spin chains
» Sklyanin algebras
» Gaudin models
» KZ equations
» 141 Landau-Lifshitz models



Model of interacting tops.
It can be viewed as anisotropic version of the spin Calogero model: IV interacting GLa tops, i.e.
Sij — 8% € Matys and

A . 1
M =Y TS g >SS0 ).
i=1 =1

6,§: 1A

mir =30 %Z S SES plwa) — 2M zzna 555 S ap(wa + L1,
=1

i=1 a#0 i#j o,f

N =1 (a single block) case is the single Euler-Arnold top

M =1 (each block is 1 x 1) case is the (spin) Calogero-Moser model
LY () L£%(2) ... L£YN(2)

. 2 aN in one column
L= | £ £2G=) .. L) N blocks
: : . : of size M x M

[,Ni(z) CNé(z) L',va(z)



Interacting tops through R-matrices solving AYBE.
= Z Eij ® LY (Z) s LY (Z) € Matas L(Z) € Matyar,
ij=1
LY(z) = 6 (pilM +tra(S" Rf’z(o)Plz)) + (1= 8ij) tr2(Sy” Ria(¢is)Pr2) , ais = i — 4
and similarly for M%(z) € Matas
M7 (2) = 6 tra(S3" Ry Pra) + (1= 655) tra(S,” Fia(gi)Pr)

where
F (u) = OuRTs (u).

The Lax equations provide equations of motion, which comes from the Hamiltonian

HP = Z trie (m12 5?351) + Z trio (Flz(QzJ)SfZSH)

=1 1<g

{84 S¥Y = 8 6" §uq — SI 6™ Gy

or

{87,858} = P1a S 6" — 81 Py 677



Equations of motion:
tr (8“) = const, Vi

N
S =[S, tr2(ma2(0)S3)] + D [S”, tra(Fra(gix)S5")]
k:k#i
N ..
Pi = — Z trio (atiIOZ(Qik)S{Z’Sgk) .
kik#i

We will come back to this model at quantum level beginning with a different construction.



Relativistic interacting tops.

Z Eij ® LY(z) € Mat(NM,C), L£"(z) € Mat(N,C).

i,j=1

a1 + aoT

£9(z ZTS&SDOL(Z wa + @i + 1), G =~ a5, Wa = —7—>

o

By introducing

J" i (8% ZT S (El(wa +qij + 1) — E1(wa + qij)) , Ei(z) =9 (x)/9(x)

equations of motion take the form

M M
Sii — SijJn(Sjj) o Jn(Sii)Sij + Z Stk gk (Skj) _ Z Jm ik (S““)Skj.
k:k#j k:k#i

M

o 1 510\ 1 ik 1M, QR4 ki 7, 4; ik ki

Qi—Ntr<S )*N Z.tr(S gk (Shy g (kS )
k:k#1

For M =1 case these are equations of motion introduced by Krichever and Zabrodin.

For N =1 one obtains relativistic top described by the classical Sklyanin algebra.



Part II: another application of AYBE — R-matrix valued Lax pairs.
Calogero-Moser model:

a 1 1

2 N
H2:Z%—VQZ@(%—%), @) = =5 = =

) 2
= < sin®(z) =«

where v — coupling constant, p(q) — the Weierstrass gp-function. Equations of motion are written
in the Lax form with the following Lax matrix:

1 vo(z,q1 —q2)  vo(z,q1 —qs) ... vo(z,q1 —qn)
vé(z,q2 — qu) D2 v(z,q2 —q3) ... vo(z,q2 —qn)
L(z) =
vd(zan —a1) vé(zan — @) vé(zan —as) ... pw

where z — spectral parameter (I. Krichever 1980).



Let us replace the functions ¢ in the Lax matrix by R-matrices (with the Planck constant i — z)

N
L= Z Eab®£aby Lab :5abpa1®--~1+V(1*5ab)RZba RZb :R(Zlb(Qa *Qb)

a,b=1
or N
p1l§ vRIz (1 —q2)  vRis(q1—q3) ... vRIin(@1—qn)
vR31(q2 — q1) p21&N VvR33(q2 —q3) ... vRiN(q2 —qn)
L(z) = ) ) ) )
VR1(gv —q1) vRi2(qv —q2) vRis(gv —q3) - 1N
and
Map(2) = Vapda + V(1 — 6at)Fap,  Fap = 8¢, Rip(Ga — @)
N
Whereda:_ E F£c7 Fc?c:F;c 2=0 *

c: c#a
One can verify that the order of R-matrices is incorrect. It is not in the agreement with the

identity R", F" — FI' Rl = FJ R, — R .FY,. Instead, we obtain R, FQ, — FO R",.



Let us add additional term to M-matrix:

N N
M) 5> M) +1v@F°, F'= > Fo= Y 9gmela —q) € Matf”
b,c:b>c b,c:b>c

In the scalar (Krichever’s) case it does not effect the Lax equations. This term exactly
changes the order of R and F°

[Ric, FOl+ > RivFie — FayRie =Y  RicFye — Y FaRi., Va#c
b#a,c b#c b#a

The the R-matrix identities work as it was expected.
The term F° — is a matrix analogue of the Calogero-Moser potential

N
]:0: Z Fb0c7 FbOc:aqbrbc(qb_QC)-
b,c:b>c
In fact, this potential describes quantum version for interacting tops:

N2 1Y o M o
'Hmps = Z % + 5 Z trio (m12 (0)8{1851) =+ Z trio (Flog(qij)SilS%]) .
i=1 i=1

i>]



We obtained the Lax equation in the form:

L(z) = {H, L(2)} = [£(2), M(2) + In © F]
Rewriting it as

{H,L(2)} + [Ix @ F°, L(2] = [£(2), M(2)]
we come to half-quantum Lax equation.

Many-body degrees of freedom (p; and g;) are classical, while the spin type variables are already
quantum (in the fundamental representation).



Quantum long-range spin chains

Equilibrium position in the Calogero-Moser system: p; = 0, and positions of particles ¢; are fixed
to be equidistant points on a circle ¢; = z; = j/N.

Then {H, L(z)} =0 and

L(z)={H,L(2)} =0=[L(2), M(2) + Iy ® F"]

[y ® F°, L(2)] = [£(2), M(2)]
where
[Iv ® F° L(z Z Ey;[F°, Lij)

This is a quantum Lax equation with the quantum Hamiltonian 1 ® F°!

In some simple case F° — is the Hamiltonian of the Haldane-Shastry long-range chain:

P, 1 >
0 _ ij 1 .
FO = E 781112 G =3 E 0,0, — spin exchange operator .
i< N a=0



Another simple example leads to the Inozemtsev chain F° = Z P”p(ﬁ(l J ))
1<j
For 8-vertex Baxter’s R-matrix

R12 Zaa®0a<ﬂa(q,wa+h)
we get new anisotropic Hamiltonian extending the previous examples:

N 3 . .
O%ﬁZZZéGgQJa(xifl‘j), Iij/N

1<j a=0

=" (6050 Bi(wis) + Z Gaba Palwis) (B1(wi; +wa) — Fi(wis) — E1(wa)))
1<J =
Possible solutions of the associative Yang-Baxter equations provide a wide class of new quantum integrable

long-range spin chains.



Is it integrable?
How to find higher Hamiltonians?

All the flows are described by the Lax equations

0, L(2) = {Hx, L(2)} = [L(z), M (2)],

Third flow in Calogero-Moser model

The third Hamiltonian
N

H;z = Z -V sz i _QJ
i=1 i#£]

provides equations of motion

Oryqi =i —v* Y o0 — ar)
ki

Orgpi =2 Y (pi + Pr)9 (0 — ar) -
ki



M-matrix is of the form:

M (2) = —6:50>_(pi + pr) £(0, qix)+
kti

+(1 = d5) (V(pi P (2 ai) + 02> (02 qi) (2, ais) — Sz, 4i7) F O, qkj)))
k4,5

R-matrix-valued generalization of the M-matrix for the third flow:

ME?)(‘Z) = —0ij VZ(Pi + pi) Fir.(qir) +
ki

(1= 60) (w1 + 93 P i) + 7 S (Rw(ase) Py avs) — R () FE ass)) ) +
k#£i,j

2 /
( Z Fbc qbc Tic qZC + VZ prbc qbc) - 3 Z [FSb(Qab),TCb(qcb)])
b,c

b,c a,b,c



The analogue of F°-term gives
. !
HE = " [Foy(wa), ren(@e)], 5 = /N
a,b,c
It was originally verified numerically that
[,?_tghain7 thain] —0.

Now we know several ways to derive the Hamiltonians and prove commutativity. One of them was
presented yesterday by M. Matushko through Dunkl operators.
Another way — explicit construction of q-deformed commuting set of operators.



We started from the classical many-body system and now are discussing a quantum spin chain.
How it happened?
{H7 ‘C} + [V]:Oa[’(z” = [[’(Z)vM(Z)] )

where M does not include the F° term. In this respect the R-matrix-valued Lax pair is
“half-quantum”: the spin variables are quantized in the fundamental representation, while the
positions and momenta, of particles remain classical. The F° term in this treatment is the
(anisotropic) spin exchange operator.

In the equilibrium position {H, L} = 0 we get quantum Lax equation.

The quantities tr(£") are the classical (Calogero-Moser) Hamiltonians only.

The F°-term describes the quantum model of interacting tops (spins).



N interacting gl,, tops

2top Z&+2Hfop ” +7 Z V(S S§% 87 ¢ i —qj) -

i,j: i)
tops a i1 Qi 1 a 2 Jjj Qi qi — qj
TEEED LD 55 SLTINTRREE o S I )
i=1 i=1 a#0 i#j a,B

N =1 case — single Euler-Arnold top
M =1 case — the Calogero-Moser model

Under quantization the potential % S V(8™ 8%, ¢q; — q;) turns into F°, which we added to
0§t i)
M(z) to have appropriate order of R-matrices:

N A2
Htops _ + ZHtop 57,1) J_-O .

i=1 i=1



One more origin of F°-term — elliptic Knizhnik-Zamolodchikov equations:
Consider the gl elliptic KZ equations for /N punctures on elliptic curve with moduli 7:

Vﬂb:O, Vi=0;+v Z rij(zi—z]—),
JijFi
fori=1,...,N and
v
V=0, V,= 2110, + 5 ijk(zj — Zk),
J#k
where r;; and m;; are the coefficients of the expansion of R-matrix. Commutativity [V;, V,;] =0

follows from the classical Yang-Baxter equation, while [V;, V;] = 0 follows from AYBE and the
heat equation (2m8, Riy(2) = 8,0,R(2)):

2m10-Tap = Ozy Mab [Tabs Mbe + Mac] + [Tacs Mab + M) = 0.
Then 1) satisfies also non-stationary Schréodinger equation
1
(2771NV87+2A>¢_<_,/]:0 N2 Zm”-ﬂ/NzIdZ:@ __ZJ>
i<j

where A =307 and m;; = m;;(0) are scalar operators depending on 7.
5



Relativistic models and the Uglov’s type g-deformation of long-range spin chains
Introduce the operators Dj, (matrix generalization of the scalar operators acting in End(#)):

N
Dy = > [T oG —2iu,h) @z — 205, h) -+ b(z5 = 2y, h) | X

1<i1 <. <P <N j=1
GAGL i

—— —
i1—1 io—1 i —1
X I I Rji4, I I Rijyia H Ry, | %
Jji=1 g =1 Jg =1
Jj2 #i1 JpFi1eig—1
ip—1 ig—1—1 i1—1
—n0;. —n0dz,; B, D D
xe i1 ...e iL X I I Rikjk I I Rik—ljk—l Riljl R
o Jg=1 Jg—1=1 J1=1
I Fi1 i1 Jk—1 701 ik—2

where k = 1,..., N and R;; = R?j (zi — z;). For a wide class of R-matrices these operators commute

[D:,D;] = 0.



In the scalar case (R;; = 1) these spin operators coincide with the Macdonald-Ruijsenaars

operators:
Dy = ZH¢(E,Zj—Zi)H67"azi7 k:l’___7N_ (1)

|I|=k zg][ i€l
J

At classical level these are Hamiltonians of relativistic interacting tops on GLxy s Lie group. By
introducing

95 (S ZT S (Br(wa +ai +1) = Bilwa +0)) s Bi(2) =9'(2)/9(x)
equations of motion take the form

N
SY — Sijjn(sjj) Jn(su SY 4 Z Sk gk (Sk] Z Jm ik (Sik)Skj .
k:k#j k:k#1

N
. 1 511\ 1 ik M, QK ki 7, q4 ik ki
Qi—ﬁtr(s )_N Z.tr(S g awi (kY gmain (§FY) S )
k:k#1
For M =1 case these are equations of motion for the spin Ruijsenaars-Schneider model
introduced by Krichever and Zabrodin.
For N =1 one obtains relativistic top described by the classical Sklyanin algebra.




Return back to the associative Yang-Baxter equation, which can be viewed as quadratic algebra

TijTik = TikTij + TjkTik for distinct 4, j, k .

It was extended by An. Kirillov to B-type associative Yang-Baxter algebra, which includes
relations
TiiYi = Yirij + TijYi + YiTij -
with additional generators y;.
In our recent paper with M. Matushko and A. Mostovskii we showed that this algebra has

representation, where the generators y; become the boundary K-matrices solving the
reflection equation

Riy(w1, 2) K1 (1) Ry (21, 22) K3 (w2) = K3 (22) Ry (21, 22) K7 (21) Rig (21, 22)

where R, (%1, 22) = Rip(x1 — 22), Riy(x1,22) = Riy(z1 + x2). The K-matrices play the role of
the boundary conditions in quantum integrable systems.



Namely,

Ry (i — q5) K (q5) = K (0)) R (@0 — @3) + Ry (a6 + 05) K7 (00) + K 7 (q;) Ry (0 + ;) -
For example, for the Baxter’s 8-vertex R-matrix we have

3

h Z) _ Z Vke2-rr7,(z+ﬁ+wk)a7-wk¢(z + wr, B4 Wk)U4—k ,
k=0

This allows to apply construction of R-matrix valued pairs to BC,, type Calogero-Inozemtsev

system:
3 n
Zpk—g Z( ) +p(qz+q])—%zzv¢fp(qzc+wa),

i<j a=0 k=1

where w+ are half-periods, and the five arbitrary constants are g, vo, v1,v2,v3 € C.



The Takasaki’s 2n x 2n Lax pair has a natural block-matrix structure:

" 12 Lij () = 6ipi + 9(1 = 6i3) 6 (2, 4ij) »
L(z) = P L () = 002,00 + 9(1 — 6,)0(=. a5
i e ) ) = bz — g~ 8)6( =),
L) = - ”plf( —0i;)0(—2, 4i5)

The function v(z, ¢;)

v(z,u) =v(z,ulv) = Z Va exp(4mz0-wa ) (22, 4 + wa)

a=0

is generalized to K-matrix, while ¢-function are again replaced with R-matrices.
In this way one finds BC,, analogue for F°-term is

I~y > g
_QZ(FH @) + Frlas + qr) ) +§ZYk0(qk), Vo (z) = 0, K"(x)
k=1

k<l

h=0

which now describes a new family of integrable long-range spin chains with boundaries.



Thank youl!



